Citation: |
[1] |
J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Animal Ecol., 44 (1975), 331-340.doi: 10.2307/3866. |
[2] |
J. Blat and K. J. Brown, Global bifurcation of positive solutions in some systems of elliptic equations, SIAM J. Math. Anal., 17 (1986), 1339-1353.doi: 10.1137/0517094. |
[3] |
R. S. Cantrell and C. Cosner, On the dynamics of predator-prey models with the Beddington-DeAngelis functional response, J. Math. Anal. Appl., 257 (2001), 206-222.doi: 10.1006/jmaa.2000.7343. |
[4] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley Ser. Math. Comput. Biol., John Wiley and sons, 2003.doi: 10.1002/0470871296. |
[5] |
W. Y. Chen and M. X. Wang, Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion, Math. Comput. Modelling, 42 (2005), 31-44.doi: 10.1016/j.mcm.2005.05.013. |
[6] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.doi: 10.1016/0022-1236(71)90015-2. |
[7] |
E. N. Dancer and Y. H. Du, Effects of certain degeneracies in the predator-prey model, SIAM J. Math. Anal., 34 (2002), 292-314.doi: 10.1137/S0036141001387598. |
[8] |
D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for trophic interaction, Ecology, 56 (1975), 881-892. |
[9] |
D. T. Dimitrov and H. V. Kojouharov, Complete mathematical analysis of predator-prey models with linear prey growth and Beddington-DeAngelis functional response, Appl. Math. Comput., 162 (2005), 523-538.doi: 10.1016/j.amc.2003.12.106. |
[10] |
Y. H. Du, Effects of a degeneracy in the competition model, part I. classical and generalized steady-state solutions, J. Differential Equations, 181 (2002), 92-132.doi: 10.1006/jdeq.2001.4074. |
[11] |
Y. H. Du, Effects of a degeneracy in the competition model, part II. perturbation and dynamical behaviour, J. Differential Equations, 181 (2002), 133-164.doi: 10.1006/jdeq.2001.4075. |
[12] |
Y. H. Du, Order structure and Topological Methods in Nonlinear PDEs, Vol.1: Maximum principle and Applications, World Scientific, Singapore, 2006.doi: 10.1142/9789812774446. |
[13] |
Y. H. Du and S. B. Hsu, A diffusive predator-prey model in heterogeneous environment, J. Differential Equations, 203 (2004), 331-364.doi: 10.1016/j.jde.2004.05.010. |
[14] |
Y. H. Du and Q. G. Huang, Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM. J. Math. Anal., 31 (1999), 1-18.doi: 10.1137/S0036141099352844. |
[15] |
Y. H. Du and X. Liang, A diffusive competition model with a protection zone, J. Differential Equations, 244 (2008), 61-86.doi: 10.1016/j.jde.2007.10.005. |
[16] |
Y. H. Du and Y. Lou, Qualitative behaviour of positive solutions of a predator-prey model: Effects of saturation, Proc. Roy. Soc. Edinburgh A, 131 (2001), 321-349.doi: 10.1017/S0308210500000895. |
[17] |
Y. H. Du and Y. Lou, S-shaped global bifurcation curve and Hopf bifurcation of positive solutions to a predator-prey model, J. Differential Equations, 144 (1998), 390-440.doi: 10.1006/jdeq.1997.3394. |
[18] |
Y. H. Du and L. Ma, Logistic type equations on $\mathbbR^N$ by a squeezing method involving boundary blow-up solutions, J. London Math. Soc., 64 (2001), 107-124.doi: 10.1017/S0024610701002289. |
[19] |
Y. H. Du, R. Peng and M. X. Wang, Effect of a protection zone in the diffusive Leslie predator-prey model, J. Differential Equations, 246 (2009), 3932-3956.doi: 10.1016/j.jde.2008.11.007. |
[20] |
Y. H. Du and J. P. Shi, Allee effect and bistability in a spatially heterogeneous predator-prey model, Trans. Amer. Math. Soc., 359 (2007), 4557-4593.doi: 10.1090/S0002-9947-07-04262-6. |
[21] |
Y. H. Du and J. P. Shi, A diffusive predator-prey model with a protection zone, J. Differential Equations, 229 (2006), 63-91.doi: 10.1016/j.jde.2006.01.013. |
[22] |
Y. H. Du and J. P. Shi, Some recent results on diffusive predator-prey models in spatially heterogeneous environment, in Nonlinear dynamics and evolution equations (eds. H. Brummer, X. Zhao and X. Zou), Fields Inst. Commun. 48, AMS, Providence, RI, (2006), 95-135. |
[23] |
Y. H. Du and M. X. Wang, Asymptotic behaviour of positive steady states to a predator-prey model, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 759-778.doi: 10.1017/S0308210500004704. |
[24] |
J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction diffusion model, J. Math. Biol., 37 (1998), 61-83.doi: 10.1007/s002850050120. |
[25] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, $2^{nd}$ edition, Springer-Verlag, Berlin, 1983.doi: 10.1007/978-3-642-61798-0. |
[26] |
G. H. Guo and J. H. Wu, Multiplicity and uniqueness of positive solutions for a predator-prey model with B-D functional response, Nonlinear Anal., 72 (2010), 1632-1646.doi: 10.1016/j.na.2009.09.003. |
[27] |
G. H. Guo and J. H. Wu, The effect of mutual interference between predators on a predator-prey model with diffusion, J. Math. Anal. Appl., 389 (2012), 179-194.doi: 10.1016/j.jmaa.2011.11.044. |
[28] |
V. Hutson, Y. Lou, K. Mischaikow and P. Poláčik, Competing species near a degenerate limit, SIAM. J. Math. Anal., 35 (2003), 453-491.doi: 10.1137/S0036141002402189. |
[29] |
T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin/New York, 1966. |
[30] |
K. Kuto, Bifurcation branch of stationary solutions for a Lotka-Volterra cross-diffusion system in a spatially heterogeneous environment, Nonlinear Anal. RWA, 10 (2009), 943-965.doi: 10.1016/j.nonrwa.2007.11.015. |
[31] |
C. S. Lin, W. M. Ni and I. Takagi, Large amplitude stationary solutions to a chemotaxis system, J. Differential Equations, 72 (1988), 1-27.doi: 10.1016/0022-0396(88)90147-7. |
[32] |
J. López-Gómez, Spectral Theory and Nonlinear Functional Analysis, in Research Notes in Mathematics, vol. 426, Chapman and Hall/CRC, Boca Raton, FL, 2001.doi: 10.1201/9781420035506. |
[33] |
Y. Lou, S. Martínez and P. Poláčik, Loops and branches of coexistence states in a Lotka-Volterra competition model, J. Differential Equations, 230 (2006), 720-742.doi: 10.1016/j.jde.2006.04.005. |
[34] |
K. Oeda, Effect of cross-diffusion on the stationary problem of a prey-predator model with a protection zone, J. Differential Equations, 250 (2011), 3988-4009.doi: 10.1016/j.jde.2011.01.026. |
[35] |
T. Ouyang, On the positive solutions of semilinear equations $\Delta u+\lambda u-hu^p=0$ on the compact manifolds, Trans. Amer. Math. Soc., 331 (1992), 503-527.doi: 10.2307/2154124. |
[36] |
R. Peng and M. X. Wang, Uniqueness and stability of steady states for a predator-prey model in heterogeneous environment, Proc. Amer. Math. Soc., 136 (2008), 859-865.doi: 10.1090/S0002-9939-07-09061-2. |
[37] |
P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.doi: 10.1016/0022-1236(71)90030-9. |
[38] |
J. P. Shi, Persistence and bifurcation of degenerate solutions, J. Funct. Anal., 169 (1999), 494-531.doi: 10.1006/jfan.1999.3483. |
[39] |
M. X. Wang, Nonlinear Elliptic Equations (in Chinese), Science Press, Beijing, 2010. |
[40] |
M. X. Wang, P. Y. H. Pang and W. Y. Chen, Sharp spatial patterns of the diffusive Holling-Tanner prey-predator model in heterogeneous environment, IMA J. Appl. Math., 73 (2008), 815-835.doi: 10.1093/imamat/hxn016. |
[41] |
Y. X. Wang and W. T. Li, Effects of cross-diffusion and heterogeneous environment on positive steady states of a prey-predator system, Nonlinear Anal. RWA, 14 (2013), 1235-1246.doi: 10.1016/j.nonrwa.2012.09.015. |
[42] |
Y. X. Wang and W. T. Li, Fish-hook shaped global bifurcation branch of a spatially heterogeneous cooperative system with cross-diffusion, J. Differential Equations, 251 (2011), 1670-1695.doi: 10.1016/j.jde.2011.03.009. |
[43] |
J. Zhou and J. P. Shi, The existence, bifurcation and stability of positive stationary solutions of a diffusive Leslie-Gower predator-prey model with Holling-type II functional responses, J. Math. Anal. Appl., 405 (2013), 618-630.doi: 10.1016/j.jmaa.2013.03.064. |