October  2016, 21(8): 2839-2850. doi: 10.3934/dcdsb.2016075

Analysis for wetting on rough surfaces by a three-dimensional phase field model

1. 

The State Key Laboratory of Scienti c and Engineering Computing, Institute of Computational Mathematics and Scienti c/Engineering Computing, Chinese Academy of Sciences, Beijing 100190, China

Received  October 2015 Revised  March 2016 Published  September 2016

In this paper, we consider the derivation of the modified Wenzel's and Cassie's equations for wetting phenomena on rough surfaces from a three-dimensional phase field model. We derive an effective boundary condition by asymptotic two-scale homogenization technique when the size of the roughness is small. The modified Wenzel's and Cassie's equations for the apparent contact angles on the rough surfaces are then derived from the effective boundary condition. The homogenization results are proved rigorously by the $\Gamma$-convergence theory.
Citation: Xianmin Xu. Analysis for wetting on rough surfaces by a three-dimensional phase field model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2839-2850. doi: 10.3934/dcdsb.2016075
References:
[1]

Y. Achdou, P. Le Tallec, F Valentin and O. Pironneau, Constructing wall laws with domain decomposition or asymptotic expansion techniques, Compt. Methods Appl. Mech. Engrg, 151 (1998), 215-232. doi: 10.1016/S0045-7825(97)00118-7.

[2]

R. A. Adams, Sobolev Spaces, Academic Press INC., 1978.

[3]

G. Alberti and A. DeSimone, Wetting of rough surfaces: A homogenization approach, Proc. R. Soc. A, 461 (2005), 79-97. doi: 10.1098/rspa.2004.1364.

[4]

D. Bonn, J. Eggers, J. Indekeu, J. Meunier and E. Rolley, Wetting and spreading, Rev. Mod. Phys. 81 (2009), 739-805. doi: 10.1103/RevModPhys.81.739.

[5]

D. Bonn and D. Ross, Wetting transitions, Rep. Prog. Phys. 64 (2001), 1085-1163.

[6]

A. Braids, $\Gamma$-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications, Vol. 22, Oxford University Press, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001.

[7]

G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245. doi: 10.1007/BF00254827.

[8]

A. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40 (1944), 546-551. doi: 10.1039/tf9444000546.

[9]

J. Cahn, Critical point wetting, J. Chem. Phys., 66 (1977), 3667-3672.

[10]

W. Choi, A. Tuteja, J. M. Mabry, R. E. Cohen and G. H. McKinley, A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces, J. Colloid Interface Sci., 339 (2009), 208-216. doi: 10.1016/j.jcis.2009.07.027.

[11]

G. Dal Maso, Introduction to $\Gamma$-convergence, Birkhauser, 1993. doi: 10.1007/978-1-4612-0327-8.

[12]

H. Y. Erbil, The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review, Surface Science Reports, 69 (2014), 325-365. doi: 10.1016/j.surfrep.2014.09.001.

[13]

L. Gao and T. J. McCarthy, How Wenzel and Cassie were wrong, Langmuir, 23 (2007), 3762-3765. doi: 10.1021/la062634a.

[14]

P. G. de Gennes, Wetting: Statics and dynamics, Rev. Modern Phy., 57 (1985), 827-863.

[15]

P. G. de Gennes, F. Brochard-Wyart and D. Quere, Capillarity and Wetting Phenomena, Springer, Berlin, 2004. doi: 10.1007/978-0-387-21656-0.

[16]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, 2003. doi: 10.1142/9789812795557.

[17]

A. L. Madureira and F. Valentin, Asymptotics of the Poisson problem in domains with curved rough boundaries, SIAM J. Math. Anal., 38 (2007), 1450-1473. doi: 10.1137/050633895.

[18]

M. De Menech, Modeling of droplet breakup in a microfluidic t-shaped junction with a phase-field model, Phys. Rev. E, 73 (2006), 031505.

[19]

G. Mchale, Cassie and Wenzel: Were they really so wrong, Langmuir, 23 (2007), 8200-8205. doi: 10.1021/la7011167.

[20]

A. Marmur and E. Bittoun, When Wenzel and Cassie Are Right: Reconciling Local and Global Considerations, Langmuir, 25 (2009), 1277-1281. doi: 10.1021/la802667b.

[21]

J. Nevard and J. B. Keller, Homogenization of rough boundaries and interfaces, SIAM J. Appl. Math. 57 (1997), 1660-1686. doi: 10.1137/S0036139995291088.

[22]

M. V. Panchagnula and S. Vedantam, Comment on how wenzel and cassie were wrong by gao and McCarthy, Langmuir, 23 (2007), 13242-13242. doi: 10.1021/la7022117.

[23]

N. A. Pantanka, On the modeling of hydrophyobic angles on rough surfaces, Langmuir, 19 (2003), 1249-1253.

[24]

D. Quere, Wetting and roughness, Annu. Rev. Mater. Res., 38 (2008), 71-99.

[25]

R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28 (1936), 988-994. doi: 10.1021/ie50320a024.

[26]

G. Whyman, E. Bormashenko and T. Stein, The rigorous derivative of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon, Chem. Phy. Letters, 450 (2008), 355-359.

[27]

G. Wolansky and A. Marmur, Apparent contact angles on rough surfaces: The Wenzel equation revisited, Colloids and Surfaces A, 156 (1999), 381-388. doi: 10.1016/S0927-7757(99)00098-9.

[28]

X. Xu and X.-P. Wang, Derivation of Wenzel's and Cassie's equations from a phase field model for two phase flow on rough surface, SIAM J. Appl. Math., 70 (2010), 2929-2941. doi: 10.1137/090775828.

[29]

X. Xu and X.-P. Wang, A modified Cassie's equation and contact angle hysteresis, Colloid Polymer Sci., 291 (2013), 299-306. doi: 10.1007/s00396-012-2748-1.

[30]

X. Xu, Modified Wenzel and Cassie equations for wetting on rough surfaces, preprint, 2015.

[31]

T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95 (1805), 65-87.

show all references

References:
[1]

Y. Achdou, P. Le Tallec, F Valentin and O. Pironneau, Constructing wall laws with domain decomposition or asymptotic expansion techniques, Compt. Methods Appl. Mech. Engrg, 151 (1998), 215-232. doi: 10.1016/S0045-7825(97)00118-7.

[2]

R. A. Adams, Sobolev Spaces, Academic Press INC., 1978.

[3]

G. Alberti and A. DeSimone, Wetting of rough surfaces: A homogenization approach, Proc. R. Soc. A, 461 (2005), 79-97. doi: 10.1098/rspa.2004.1364.

[4]

D. Bonn, J. Eggers, J. Indekeu, J. Meunier and E. Rolley, Wetting and spreading, Rev. Mod. Phys. 81 (2009), 739-805. doi: 10.1103/RevModPhys.81.739.

[5]

D. Bonn and D. Ross, Wetting transitions, Rep. Prog. Phys. 64 (2001), 1085-1163.

[6]

A. Braids, $\Gamma$-convergence for Beginners, Oxford Lecture Series in Mathematics and its Applications, Vol. 22, Oxford University Press, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001.

[7]

G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rational Mech. Anal., 92 (1986), 205-245. doi: 10.1007/BF00254827.

[8]

A. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40 (1944), 546-551. doi: 10.1039/tf9444000546.

[9]

J. Cahn, Critical point wetting, J. Chem. Phys., 66 (1977), 3667-3672.

[10]

W. Choi, A. Tuteja, J. M. Mabry, R. E. Cohen and G. H. McKinley, A modified Cassie-Baxter relationship to explain contact angle hysteresis and anisotropy on non-wetting textured surfaces, J. Colloid Interface Sci., 339 (2009), 208-216. doi: 10.1016/j.jcis.2009.07.027.

[11]

G. Dal Maso, Introduction to $\Gamma$-convergence, Birkhauser, 1993. doi: 10.1007/978-1-4612-0327-8.

[12]

H. Y. Erbil, The debate on the dependence of apparent contact angles on drop contact area or three-phase contact line: A review, Surface Science Reports, 69 (2014), 325-365. doi: 10.1016/j.surfrep.2014.09.001.

[13]

L. Gao and T. J. McCarthy, How Wenzel and Cassie were wrong, Langmuir, 23 (2007), 3762-3765. doi: 10.1021/la062634a.

[14]

P. G. de Gennes, Wetting: Statics and dynamics, Rev. Modern Phy., 57 (1985), 827-863.

[15]

P. G. de Gennes, F. Brochard-Wyart and D. Quere, Capillarity and Wetting Phenomena, Springer, Berlin, 2004. doi: 10.1007/978-0-387-21656-0.

[16]

E. Giusti, Direct Methods in the Calculus of Variations, World Scientific, 2003. doi: 10.1142/9789812795557.

[17]

A. L. Madureira and F. Valentin, Asymptotics of the Poisson problem in domains with curved rough boundaries, SIAM J. Math. Anal., 38 (2007), 1450-1473. doi: 10.1137/050633895.

[18]

M. De Menech, Modeling of droplet breakup in a microfluidic t-shaped junction with a phase-field model, Phys. Rev. E, 73 (2006), 031505.

[19]

G. Mchale, Cassie and Wenzel: Were they really so wrong, Langmuir, 23 (2007), 8200-8205. doi: 10.1021/la7011167.

[20]

A. Marmur and E. Bittoun, When Wenzel and Cassie Are Right: Reconciling Local and Global Considerations, Langmuir, 25 (2009), 1277-1281. doi: 10.1021/la802667b.

[21]

J. Nevard and J. B. Keller, Homogenization of rough boundaries and interfaces, SIAM J. Appl. Math. 57 (1997), 1660-1686. doi: 10.1137/S0036139995291088.

[22]

M. V. Panchagnula and S. Vedantam, Comment on how wenzel and cassie were wrong by gao and McCarthy, Langmuir, 23 (2007), 13242-13242. doi: 10.1021/la7022117.

[23]

N. A. Pantanka, On the modeling of hydrophyobic angles on rough surfaces, Langmuir, 19 (2003), 1249-1253.

[24]

D. Quere, Wetting and roughness, Annu. Rev. Mater. Res., 38 (2008), 71-99.

[25]

R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28 (1936), 988-994. doi: 10.1021/ie50320a024.

[26]

G. Whyman, E. Bormashenko and T. Stein, The rigorous derivative of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon, Chem. Phy. Letters, 450 (2008), 355-359.

[27]

G. Wolansky and A. Marmur, Apparent contact angles on rough surfaces: The Wenzel equation revisited, Colloids and Surfaces A, 156 (1999), 381-388. doi: 10.1016/S0927-7757(99)00098-9.

[28]

X. Xu and X.-P. Wang, Derivation of Wenzel's and Cassie's equations from a phase field model for two phase flow on rough surface, SIAM J. Appl. Math., 70 (2010), 2929-2941. doi: 10.1137/090775828.

[29]

X. Xu and X.-P. Wang, A modified Cassie's equation and contact angle hysteresis, Colloid Polymer Sci., 291 (2013), 299-306. doi: 10.1007/s00396-012-2748-1.

[30]

X. Xu, Modified Wenzel and Cassie equations for wetting on rough surfaces, preprint, 2015.

[31]

T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95 (1805), 65-87.

[1]

Darya V. Verveyko, Andrey Yu. Verisokin. Application of He's method to the modified Rayleigh equation. Conference Publications, 2011, 2011 (Special) : 1423-1431. doi: 10.3934/proc.2011.2011.1423

[2]

Nakao Hayashi, Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the modified witham equation. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1407-1448. doi: 10.3934/cpaa.2018069

[3]

Ronald Mickens, Kale Oyedeji. Traveling wave solutions to modified Burgers and diffusionless Fisher PDE's. Evolution Equations and Control Theory, 2019, 8 (1) : 139-147. doi: 10.3934/eect.2019008

[4]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067

[5]

Yongsheng Mi, Chunlai Mu, Pan Zheng. On the Cauchy problem of the modified Hunter-Saxton equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 2047-2072. doi: 10.3934/dcdss.2016084

[6]

David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319

[7]

Micol Amar, Daniele Andreucci, Claudia Timofte. Homogenization of a modified bidomain model involving imperfect transmission. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1755-1782. doi: 10.3934/cpaa.2021040

[8]

Marcus A. Khuri. On the local solvability of Darboux's equation. Conference Publications, 2009, 2009 (Special) : 451-456. doi: 10.3934/proc.2009.2009.451

[9]

Yuncherl Choi, Taeyoung Ha, Jongmin Han, Doo Seok Lee. Bifurcation and final patterns of a modified Swift-Hohenberg equation. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2543-2567. doi: 10.3934/dcdsb.2017087

[10]

Maurizio Grasselli, Hao Wu. Robust exponential attractors for the modified phase-field crystal equation. Discrete and Continuous Dynamical Systems, 2015, 35 (6) : 2539-2564. doi: 10.3934/dcds.2015.35.2539

[11]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete and Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[12]

Satoshi Masaki, Jun-ichi Segata. Modified scattering for the Klein-Gordon equation with the critical nonlinearity in three dimensions. Communications on Pure and Applied Analysis, 2018, 17 (4) : 1595-1611. doi: 10.3934/cpaa.2018076

[13]

Xiaoyu Zeng, Yimin Zhang. Asymptotic behaviors of ground states for a modified Gross-Pitaevskii equation. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5263-5273. doi: 10.3934/dcds.2019214

[14]

Kenji Nakanishi. Modified wave operators for the Hartree equation with data, image and convergence in the same space. Communications on Pure and Applied Analysis, 2002, 1 (2) : 237-252. doi: 10.3934/cpaa.2002.1.237

[15]

Aiyong Chen, Xinhui Lu. Orbital stability of elliptic periodic peakons for the modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1703-1735. doi: 10.3934/dcds.2020090

[16]

Yixia Shi, Maoan Han. Existence of generalized homoclinic solutions for a modified Swift-Hohenberg equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3189-3204. doi: 10.3934/dcdss.2020114

[17]

C. E. Kenig, S. N. Ziesler. Maximal function estimates with applications to a modified Kadomstev-Petviashvili equation. Communications on Pure and Applied Analysis, 2005, 4 (1) : 45-91. doi: 10.3934/cpaa.2005.4.45

[18]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[19]

Gianluca Frasca-Caccia, Peter E. Hydon. Locally conservative finite difference schemes for the modified KdV equation. Journal of Computational Dynamics, 2019, 6 (2) : 307-323. doi: 10.3934/jcd.2019015

[20]

Ying Fu. A note on the Cauchy problem of a modified Camassa-Holm equation with cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2011-2039. doi: 10.3934/dcds.2015.35.2011

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (205)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]