- Previous Article
- DCDS-B Home
- This Issue
-
Next Article
Bounded traveling wave solutions for MKdV-Burgers equation with the negative dispersive coefficient
A numerical study of three-dimensional droplets spreading on chemically patterned surfaces
1. | School of Mathematics and Statistics, Guangdong University of Finance and Economics, China |
2. | Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong, China |
3. | Computational Transport Phenomena Laboratory, King Abdullah University of Science and Technology, Saudi Arabia |
References:
[1] |
S. Brandon, N. Haimovich, E. Yeger and A. Marmur, Partial wetting of chemically patterned surfaces: The effect of drop size, J. Colloid Interf. Sci., 263 (2003), 237-243.
doi: 10.1016/S0021-9797(03)00285-6. |
[2] |
S. Brandon and A. Marmur, Simulation of contact angle hysteresis on chemically heterogeneous surfaces, J. Colloid Interf. Sci., 183 (1996), 351-355.
doi: 10.1006/jcis.1996.0556. |
[3] |
S. Brandon, A. Wachs and A. Marmur, Simulated contact angle hysteresis of a three-dimensional drop on a chemically heterogeneous surface: a numerical example, J. Colloid Interf. Sci., 191 (1997), 110-116.
doi: 10.1006/jcis.1997.4912. |
[4] |
A. B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40 (1944), 546-551.
doi: 10.1039/tf9444000546. |
[5] |
D. Chatain, D. Lewis, J. Baland and W. Carter, Numerical analysis of the shapes and energies of droplets on micropatterned substrates, Langmuir, 22 (2006), 4237-4243.
doi: 10.1021/la053146q. |
[6] |
M. Gao and X. P. Wang, A gradient stable scheme for a phase field model for the moving contact line problem, J. Comput. Phys., 231 (2012), 1372-1386.
doi: 10.1016/j.jcp.2011.10.015. |
[7] |
P. G. de Gennes, Wetting: Statics and dynamics, Simple Views on Condensed Matter, 12 (2003), 357-394.
doi: 10.1142/9789812564849_0041. |
[8] |
M. Iwamatsu, Contact angle hysteresis of cylindrical drops on chemically heterogeneous striped surfaces, J. Colloid Interf. Sci., 297 (2006), 772-777.
doi: 10.1016/j.jcis.2005.11.032. |
[9] |
J. F. Joanny and P. G. de Gennes, A model for contact angle hysteresis, Simple Views on Condensed Matter, 12 (2003), 457-467.
doi: 10.1142/9789812564849_0048. |
[10] |
R. Johnson and R. Dettre, Contact-angle hysteresis. 3. study of an idealized heterogeneous surface, J. Phys. Chem., 68 (1964), 1744-1749.
doi: 10.1021/j100789a012. |
[11] |
H. Kusumaatmaja and J. M. Yeomans, Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces, Langmuir, 23 (2007), 6019-6032.
doi: 10.1021/la063218t. |
[12] |
S. T. Larsen and R. Taboryski, A Cassie-like law using triple phase boundary line fractions for faceted droplets on chemically heterogeneous surfaces, Langmuir, 25 (2009), 1282-1284.
doi: 10.1021/la8030045. |
[13] |
A. Marmur, Contact-angle hysteresis on heterogeneous smooth surfaces, J. Colloid Interf. Sci., 168 (1994), 40-46.
doi: 10.1006/jcis.1994.1391. |
[14] |
T. Z. Qian, X. P. Wang and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68 (2003), 016306.
doi: 10.1103/PhysRevE.68.016306. |
[15] |
W. Q. Ren, Wetting transition on patterned surfaces: Transition states and energy barriers, Langmuir, 30 (2014), 2879-2885.
doi: 10.1021/la404518q. |
[16] |
L. Schwartz and S. Garoff, Contact angle hysteresis on heterogeneous surfaces, Langmuir, 1 (1985), 219-230.
doi: 10.1021/la00062a007. |
[17] |
L. Schwartz and S. Garoff, Contact angle hysteresis and the shape of the 3-phase line, J. Colloid Interf. Sci., 106 (1985), 422-437.
doi: 10.1016/S0021-9797(85)80016-3. |
[18] |
P. S. Swain and R. Lipowsky, Contact angles on heterogeneous surfaces: A new look at Cassie's and Wenzel's laws, Langmuir, 14 (1998), 6772-6780.
doi: 10.1021/la980602k. |
[19] |
X. P. Wang, T. Z. Qian and P. Sheng, Moving contact line on chemically patterned surfaces, J. Fluid Mech., 605 (2008), 59-78.
doi: 10.1017/S0022112008001456. |
[20] |
R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28 (1936), 988-994.
doi: 10.1021/ie50320a024. |
[21] |
G. Wolansky and A. Marmur, The actual contact angle on a heterogeneous rough surface in three dimensions, Langmuir, 14 (1998), 5292-5297.
doi: 10.1021/la960723p. |
[22] |
X. Xu and X. P. Wang, Analysis of wetting and contact angle hysteresis on chemically patterned surfaces, SIAM J. Appl. Math., 71 (2011), 1753-1779.
doi: 10.1137/110829593. |
[23] |
T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95 (1805), 65-87.
doi: 10.1098/rstl.1805.0005. |
[24] |
H. Zhong, X. P. Wang, A. Salama and S. Sun, Quasistatic analysis on configuration of two-phase flow in Y-shaped tubes, Comput. Math. Appl., 68 (2014), 1905-1914.
doi: 10.1016/j.camwa.2014.10.004. |
show all references
References:
[1] |
S. Brandon, N. Haimovich, E. Yeger and A. Marmur, Partial wetting of chemically patterned surfaces: The effect of drop size, J. Colloid Interf. Sci., 263 (2003), 237-243.
doi: 10.1016/S0021-9797(03)00285-6. |
[2] |
S. Brandon and A. Marmur, Simulation of contact angle hysteresis on chemically heterogeneous surfaces, J. Colloid Interf. Sci., 183 (1996), 351-355.
doi: 10.1006/jcis.1996.0556. |
[3] |
S. Brandon, A. Wachs and A. Marmur, Simulated contact angle hysteresis of a three-dimensional drop on a chemically heterogeneous surface: a numerical example, J. Colloid Interf. Sci., 191 (1997), 110-116.
doi: 10.1006/jcis.1997.4912. |
[4] |
A. B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40 (1944), 546-551.
doi: 10.1039/tf9444000546. |
[5] |
D. Chatain, D. Lewis, J. Baland and W. Carter, Numerical analysis of the shapes and energies of droplets on micropatterned substrates, Langmuir, 22 (2006), 4237-4243.
doi: 10.1021/la053146q. |
[6] |
M. Gao and X. P. Wang, A gradient stable scheme for a phase field model for the moving contact line problem, J. Comput. Phys., 231 (2012), 1372-1386.
doi: 10.1016/j.jcp.2011.10.015. |
[7] |
P. G. de Gennes, Wetting: Statics and dynamics, Simple Views on Condensed Matter, 12 (2003), 357-394.
doi: 10.1142/9789812564849_0041. |
[8] |
M. Iwamatsu, Contact angle hysteresis of cylindrical drops on chemically heterogeneous striped surfaces, J. Colloid Interf. Sci., 297 (2006), 772-777.
doi: 10.1016/j.jcis.2005.11.032. |
[9] |
J. F. Joanny and P. G. de Gennes, A model for contact angle hysteresis, Simple Views on Condensed Matter, 12 (2003), 457-467.
doi: 10.1142/9789812564849_0048. |
[10] |
R. Johnson and R. Dettre, Contact-angle hysteresis. 3. study of an idealized heterogeneous surface, J. Phys. Chem., 68 (1964), 1744-1749.
doi: 10.1021/j100789a012. |
[11] |
H. Kusumaatmaja and J. M. Yeomans, Modeling contact angle hysteresis on chemically patterned and superhydrophobic surfaces, Langmuir, 23 (2007), 6019-6032.
doi: 10.1021/la063218t. |
[12] |
S. T. Larsen and R. Taboryski, A Cassie-like law using triple phase boundary line fractions for faceted droplets on chemically heterogeneous surfaces, Langmuir, 25 (2009), 1282-1284.
doi: 10.1021/la8030045. |
[13] |
A. Marmur, Contact-angle hysteresis on heterogeneous smooth surfaces, J. Colloid Interf. Sci., 168 (1994), 40-46.
doi: 10.1006/jcis.1994.1391. |
[14] |
T. Z. Qian, X. P. Wang and P. Sheng, Molecular scale contact line hydrodynamics of immiscible flows, Phys. Rev. E, 68 (2003), 016306.
doi: 10.1103/PhysRevE.68.016306. |
[15] |
W. Q. Ren, Wetting transition on patterned surfaces: Transition states and energy barriers, Langmuir, 30 (2014), 2879-2885.
doi: 10.1021/la404518q. |
[16] |
L. Schwartz and S. Garoff, Contact angle hysteresis on heterogeneous surfaces, Langmuir, 1 (1985), 219-230.
doi: 10.1021/la00062a007. |
[17] |
L. Schwartz and S. Garoff, Contact angle hysteresis and the shape of the 3-phase line, J. Colloid Interf. Sci., 106 (1985), 422-437.
doi: 10.1016/S0021-9797(85)80016-3. |
[18] |
P. S. Swain and R. Lipowsky, Contact angles on heterogeneous surfaces: A new look at Cassie's and Wenzel's laws, Langmuir, 14 (1998), 6772-6780.
doi: 10.1021/la980602k. |
[19] |
X. P. Wang, T. Z. Qian and P. Sheng, Moving contact line on chemically patterned surfaces, J. Fluid Mech., 605 (2008), 59-78.
doi: 10.1017/S0022112008001456. |
[20] |
R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28 (1936), 988-994.
doi: 10.1021/ie50320a024. |
[21] |
G. Wolansky and A. Marmur, The actual contact angle on a heterogeneous rough surface in three dimensions, Langmuir, 14 (1998), 5292-5297.
doi: 10.1021/la960723p. |
[22] |
X. Xu and X. P. Wang, Analysis of wetting and contact angle hysteresis on chemically patterned surfaces, SIAM J. Appl. Math., 71 (2011), 1753-1779.
doi: 10.1137/110829593. |
[23] |
T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, 95 (1805), 65-87.
doi: 10.1098/rstl.1805.0005. |
[24] |
H. Zhong, X. P. Wang, A. Salama and S. Sun, Quasistatic analysis on configuration of two-phase flow in Y-shaped tubes, Comput. Math. Appl., 68 (2014), 1905-1914.
doi: 10.1016/j.camwa.2014.10.004. |
[1] |
Antonio DeSimone, Natalie Grunewald, Felix Otto. A new model for contact angle hysteresis. Networks and Heterogeneous Media, 2007, 2 (2) : 211-225. doi: 10.3934/nhm.2007.2.211 |
[2] |
Xiao-Ping Wang, Xianmin Xu. A dynamic theory for contact angle hysteresis on chemically rough boundary. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1061-1073. doi: 10.3934/dcds.2017044 |
[3] |
Haiyan Yin, Changjiang Zhu. Convergence rate of solutions toward stationary solutions to a viscous liquid-gas two-phase flow model in a half line. Communications on Pure and Applied Analysis, 2015, 14 (5) : 2021-2042. doi: 10.3934/cpaa.2015.14.2021 |
[4] |
Theodore Tachim Medjo. A two-phase flow model with delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3273-3294. doi: 10.3934/dcdsb.2017137 |
[5] |
Shu Wang, Yixuan Zhao. Asymptotic stability of planar rarefaction wave to a multi-dimensional two-phase flow. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022091 |
[6] |
Yi Shi, Kai Bao, Xiao-Ping Wang. 3D adaptive finite element method for a phase field model for the moving contact line problems. Inverse Problems and Imaging, 2013, 7 (3) : 947-959. doi: 10.3934/ipi.2013.7.947 |
[7] |
T. Tachim Medjo. Averaging of an homogeneous two-phase flow model with oscillating external forces. Discrete and Continuous Dynamical Systems, 2012, 32 (10) : 3665-3690. doi: 10.3934/dcds.2012.32.3665 |
[8] |
Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198 |
[9] |
Theodore Tachim-Medjo. Optimal control of a two-phase flow model with state constraints. Mathematical Control and Related Fields, 2016, 6 (2) : 335-362. doi: 10.3934/mcrf.2016006 |
[10] |
Changyan Li, Hui Li. Well-posedness of the two-phase flow problem in incompressible MHD. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5609-5632. doi: 10.3934/dcds.2021090 |
[11] |
Ciprian G. Gal, Maurizio Grasselli. Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 1-39. doi: 10.3934/dcds.2010.28.1 |
[12] |
Barbara Lee Keyfitz, Richard Sanders, Michael Sever. Lack of hyperbolicity in the two-fluid model for two-phase incompressible flow. Discrete and Continuous Dynamical Systems - B, 2003, 3 (4) : 541-563. doi: 10.3934/dcdsb.2003.3.541 |
[13] |
K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591 |
[14] |
Yangyang Qiao, Huanyao Wen, Steinar Evje. Compressible and viscous two-phase flow in porous media based on mixture theory formulation. Networks and Heterogeneous Media, 2019, 14 (3) : 489-536. doi: 10.3934/nhm.2019020 |
[15] |
Feimin Huang, Dehua Wang, Difan Yuan. Nonlinear stability and existence of vortex sheets for inviscid liquid-gas two-phase flow. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3535-3575. doi: 10.3934/dcds.2019146 |
[16] |
Guochun Wu, Yinghui Zhang. Global analysis of strong solutions for the viscous liquid-gas two-phase flow model in a bounded domain. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1411-1429. doi: 10.3934/dcdsb.2018157 |
[17] |
Helmut Abels, Harald Garcke, Josef Weber. Existence of weak solutions for a diffuse interface model for two-phase flow with surfactants. Communications on Pure and Applied Analysis, 2019, 18 (1) : 195-225. doi: 10.3934/cpaa.2019011 |
[18] |
Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory. An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6 (3) : 401-423. doi: 10.3934/nhm.2011.6.401 |
[19] |
Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12 (1) : 147-171. doi: 10.3934/nhm.2017006 |
[20] |
Marie Henry, Danielle Hilhorst, Robert Eymard. Singular limit of a two-phase flow problem in porous medium as the air viscosity tends to zero. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 93-113. doi: 10.3934/dcdss.2012.5.93 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]