\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Mean field limit with proliferation

Abstract Related Papers Cited by
  • An interacting particle system with long range interaction is considered. Particles, in addition to the interaction, proliferate with a rate depending on the empirical measure. We prove convergence of the empirical measure to the solution of a parabolic equation with non-local nonlinear transport term and proliferation term of logistic type.
    Mathematics Subject Classification: Primary: 60K35, 35K57; Secondary: 60F17, 35K58.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. E. Baker and M. J. Simpson, Correcting mean-field approximations for birth-death-movement processes, Phys. Rev. E, 82 (2010), 041905, 12 pp.doi: 10.1103/PhysRevE.82.041905.

    [2]

    L. Banas, Z. Brzezniak, M. Neklyudov and A. Prohl, Stochastic Ferromagnetism: Analysis and Numerics, De Gruyter Studies in Mathematics, 58. De Gruyter, Berlin, 2014.

    [3]

    M. Bodnar and J. J. L. Velazquez, Derivation of macroscopic equations for individual cell-based models: A formal approach, Math. Meth. Appl. Sci., 28 (2005), 1757-1779.doi: 10.1002/mma.638.

    [4]

    Z. Brzezniak, M. Ondrejat and E. Motyl, Invariant measure for the stochastic Navier-Stokes equations in unbounded 2D domains, preprint, arXiv:1502.02637.

    [5]

    Z. Brzezniak and E. Motyl, Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D-domains, J. Diff. Eq., 254 (2013), 1627-1685.doi: 10.1016/j.jde.2012.10.009.

    [6]

    F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, preprint, Probab. Theory Relat. Fields, 102 (1995), 367-391.doi: 10.1007/BF01192467.

    [7]

    J. L. Lions, Quelques Methodes de Resolution des Problemes aux Limites non Lineaires, Dunod, Gauthier-Villars, Paris, 1969.

    [8]

    S. Meleard and V. Bansaye, Some Stochastic Models for Structured Populations: Scaling Limits and Long Time Behavior, Stochastics in Biological Systems, 1.4. Springer, Cham; MBI Mathematical Biosciences Institute, Ohio State University, Columbus, OH, 2015, arXiv:1506.04165v1.doi: 10.1007/978-3-319-21711-6.

    [9]

    M. Metivier, Quelques problèmes liés aux systèmes infinis de particules et leurs limites, Séminaire de Probabilités, (Strasbourg) 20 (1986), 426-446.doi: 10.1007/BFb0075734.

    [10]

    G. Nappo and E. Orlandi, Limit laws for a coagulation model of interacting random particles, Annales de l'I.H.P. section B, 24 (1988), 319-344.

    [11]

    K. Oelschläger, A law of large numbers for moderately interacting diffusion processes, Zeitschrift fur Wahrsch. Verwandte Gebiete, 69 (1985), 279-322.doi: 10.1007/BF02450284.

    [12]

    K. Oelschläger, On the Derivation of Reaction-Diffusion Equations as Limit Dynamics of Systems of Moderately Interacting Stochastic Processes, Probab. Th. Rel. Fields, 82 (1989), 565-586.doi: 10.1007/BF00341284.

    [13]

    R. Philipowski, Interacting diffusions approximating the porous medium equation and propagation of chaos, Stoch. Proc. Appl., 117 (2007), 526-538.doi: 10.1016/j.spa.2006.09.003.

    [14]

    A. Stevens, The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particle systems, SIAM J. Appl. Math., 61 (2000), 183-212.doi: 10.1137/S0036139998342065.

    [15]

    S. He, J. Wang and J. A. Yan, Semimartingale Theory and Stochastic Calculus, Beijing: Science Press, 1992.

    [16]

    P. Hinow, P. Gerlee, L. J. McCawley, V. Quaranta, M. Ciobanu, S. Wang, J. M. Graham, B. P. Ayati, J. Claridge, K. R. Swanson, M. Loveless and A. R. A. Anderson, A spatial model of tumor-host interaction: Application of chemoterapy, Math. Biosc. Engin., 6 (2009), 521-546.

    [17]

    K. Uchiyama, Pressure in classical Statistical Mechanics and interacting Brownian particles in multi-dimensions, Ann. H. Poincaré, 1 (2000), 1159-1202.doi: 10.1007/PL00001025.

    [18]

    S. R. S. Varadhan, Scaling limit for interacting diffusions, Comm. Math. Phys., 135 (1991), 313-353.doi: 10.1007/BF02098046.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(219) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return