\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Linear approximation of nonlinear Schrödinger equations driven by cylindrical Wiener processes

Abstract Related Papers Cited by
  • In this paper the existence and uniqueness of the solution for a stochastic nonlinear Schrödinger equation, which is perturbed by a cylindrical Wiener process is investigated. The existence of the variational solution and of the generalized weak solution are proved by using sequences of successive approximations, which are the solutions of certain linear problems.
    Mathematics Subject Classification: Primary: 60H15, 60H35, 35Q41; Secondary: 81Q05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    N. U. Ahmed, Semigroup Theory with Applications to Systems and Control, Longman Scientific & Technical, Harlow Essex, 1991.

    [2]

    N. N. Akhmeddiev, A. Ankiewicz and J. M. Soto-Crespo, Singularities and special soliton solutions of the cubic quintic complex Ginzburg-Landau equation, Phys. Rev. E, 53 (1996), 1190-1201, Available from: http://dx.doi.org/10.1103/PhysRevE.53.1190doi: 10.1103/PhysRevE.53.1190.

    [3]

    A. De Bouard and A. Debussche, A stochastic nonlinear Schrödinger equation with multiplicative noise, Commun. Math. Phys., 205 (1999), 161-181.doi: 10.1007/s002200050672.

    [4]

    A. De Bouard and A. Debussche, A semi-discrete scheme for the stochastic nonlinear Schr\"odinger equation, Numer. Math., 96 (2004), 733-770.doi: 10.1007/s00211-003-0494-5.

    [5]

    A. Biswas and S. Konar, Introduction to Non-Kerr Law Optical Solitons, Chapman and Hall/CRC, 2007.

    [6]

    Y. Chen, $L^\infty(\mathbb R^n)$ decay for solutions to a class of Schrödinger equations, Appl. Anal., 39 (1990), 209-226.doi: 10.1080/00036819008839982.

    [7]

    A. Debussche and C. Odasso, Ergodicity for a weakly damped stochastic non-linear Schrödinger equation, J. Evol. Equ., 5 (2005), 317-356.doi: 10.1007/s00028-005-0195-x.

    [8]

    G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, University Press, Cambridge, 1992.doi: 10.1017/CBO9780511666223.

    [9]

    R. Dautray and J.-L. Lions, Mathematical Analysis And Numerical Methods For Science And Technology, Volume 5: Evolution Problems I, Springer Verlag, Berlin, 1992.doi: 10.1007/978-3-642-58090-1.

    [10]

    W. Grecksch and H. Lisei, Stochastic nonlinear equations of Schrödinger type, Stoch. Anal. Appl., 29 (2011), 631-653.doi: 10.1080/07362994.2011.581091.

    [11]

    W. Grecksch and C. Tudor, Stochastic Evolution Equations. A Hilbert Space Approach, Akademie Verlag, Berlin, 1995.

    [12]

    H. M. Itô, Optimal Gaussian solutions of nonlinear stochastic partial differential equations, J. Stat. Phys., 37 (1984), 653-671.doi: 10.1007/BF01010500.

    [13]

    S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods, Springer Verlag, Heidelberg, 2003.

    [14]

    J. L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer Verlag, Berlin-New York, 1971.

    [15]

    R. Mikulevicius and B. Rozovskii, On martingale problem solutions for stochastic Navier Stokes equations, In: Stochastic Partial Differential Equations and Applications, Edited by G. Da Prato, L. Tubaro. Marcel & Dekker, Inc. New York, Basel, 227 (2002), 405-415.

    [16]

    C. Prévôt and M. Röckner, A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics Vol. 1905, Springer Verlag, 2007.

    [17]

    M. Reed and B. Simao, Methods of Modern Mathematical Physics. IV: Analysis of Operators, Academic Press San Diego, 1978.

    [18]

    J. J. Rasmussen and K. Rypdal, Blow-up in nonlinear Schroedinger equations-I. A general review, Phys. Scripta., 33 (1986), 481-497.doi: 10.1088/0031-8949/33/6/001.

    [19]

    B. L. Rozovskii, Stochastic Evolution Systems. Linear Theory and Applications to Nonlinear Filtering, Kluwer Academic Publishers, Dordrecht, 1990.doi: 10.1007/978-94-011-3830-7.

    [20]

    E. Zeidler, Nonlinear Functional Analysis and Its Applications. I: Fixed-point Theorems, Springer-Verlag, New York, 1986.doi: 10.1007/978-1-4612-4838-5.

    [21]

    E. Zeidler, Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators, Springer-Verlag, New York, 1990.doi: 10.1007/978-1-4612-0985-0.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(171) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return