Advanced Search
Article Contents
Article Contents

Takens theorem for random dynamical systems

Abstract Related Papers Cited by
  • In this paper, we study random dynamical systems with partial hyperbolic fixed points and prove the smooth conjugacy theorems of Takens type based on their Lyapunov exponents.
    Mathematics Subject Classification: Primary: 37H99; Secondary: 37C15, 37C40, 37D25, 37D30.


    \begin{equation} \\ \end{equation}
  • [1]

    L. Arnold, Random Dynamical Systems, Springer, New York, 1998.


    L. Arnold and K. Xu, Normal forms for random differential equations, Journal of Differential Equations, 116 (1995), 484-503.doi: 10.1006/jdeq.1995.1045.


    V. I. Arnold, Geometric Methods in the Theory of Ordinary Differential. Equations, Springer-Verlag, New York, 1983.


    V. I. Arnold, Small denominators I. One the mapping of a circle into itself, Izv. Akad. Nauk. Math., 25 (1961), 21-86.


    A. Banyaga, R. de la Llave and C. E. Wayne, Cohomology equations near hyperbolic points and geometric versions of Sternberg linearization theorem, J. Geom. Anal., 6 (1996), 613-649.doi: 10.1007/BF02921624.


    G. R. Beliskii, Functional equations and the conjugacy of diffeomorphism of finite smoothness class, Functional Anal. Appl., 7 (1973), 17-28.


    G. R. Beliskii, Equivalence and normal forms of germs of smooth mappings, Russian Math. Surveys, 33 (1978), 95-155.


    A. D. Brjuno, Analytic form of differential equations I, II, Trans. Mosc. Math. Soc., 25 (1971), 119-262; 26 (1972), 199-239.


    C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, LNM 580. Springer-Verlag, Berlin-Heidelberg-New York, 1977.


    K. T. Chen, Equivalence and decomposition of vector fields about an elementary critical point, Amer.J. Math., 85 (1963), 693-722.doi: 10.2307/2373115.


    S.-N. Chow, K. Lu and Y.-Q. Shen, Normal form and linearization for quasiperiodic systems, Trans. Amer. Math. Soc., 331 (1992), 361-376.doi: 10.1090/S0002-9947-1992-1076612-1.


    N. D. Cong, Topological Dynamics of Random Dynamical Systems, Orford Mathematical Monographs, Clarendon Press, Oxford, 1997.


    M. ElBialy, Linearization of vector fields near resonant hyperbolic rest points, J. Differential Equations, 118 (1995), 336-370.doi: 10.1006/jdeq.1995.1076.


    D. M. Grobman, Topological classification of the neighborhood of a singular point in $n$-dimensional space, Mat. Sb., 56 (1962), 77-94.


    P. Guo and J. Shen, Smooth invariant manifolds for random dynamical systems, Rocky Mountain Journal of Mathematics, to appear.


    P. Hartman, On local homeomorphisms of Euclidean spaces, Bol. Soc. Mat. Mexican, 5 (1960), 220-241.


    P. Hartman, On the local linearization of differential equations, Proc. Amer. Math. Soc., 14 (1963), 568-573.doi: 10.1090/S0002-9939-1963-0152718-3.


    Yu. S. Ilyashenko and W. Li, Nonlocal Bifurcations. Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1999.


    Yu. S. Ilyashenko and S. Yu. Yakovenko, Finitely smooth normal forms of local families of diffeomorphisms and vector fields, (Russian) Uspekhi Mat. Nauk, 46 (1991), 3-39; translation in Russian Math. Surveys 46 (1991), 1-43.doi: 10.1070/RM1991v046n01ABEH002733.


    Y. Kifer, Random Perturbations of Dynamical Systems, Progress in Probability and Statistics, 16, Birkhäuser Boston, Inc., Boston, MA, 1988.doi: 10.1007/978-1-4615-8181-9.


    W. Li and K. Lu, Poincaré theorems for random dynamical systems, Ergodic Theory Dynam. Systems, 25 (2005), 1221-1236.doi: 10.1017/S014338570400094X.


    W. Li and K. Lu, Sternberg theorems for random dynamical systems, Comm. Pure Appl. Math., 58 (2005), 941-988.doi: 10.1002/cpa.20083.


    W. Li and K. Lu, A Siegel theorem for random dynamical systems, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 635-642.doi: 10.3934/dcdsb.2008.9.635.


    P.-D. Liu, Random perturbations of Axiom A basic sets, J. Statist. Phys., 90 (1998), 467-490.doi: 10.1023/A:1023280407906.


    P.-D. Liu, Dynamics of Random perturbations: Smooth ergodic theory, Ergod. Th. & Dynam. Sys., 21 (2001), 1279-1319.doi: 10.1017/S0143385701001614.


    P. Liu and M. Qian, Smooth Ergodic Theory of Random Dynamical Systems, Lecture Notes in Mathematics, 1606. Springer-Verlag, Berlin, 1995.doi: 10.1007/BFb0094308.


    K. R. Meyer, The implicit function theorem and analytic differential equations, Lect. Notes in Math., Springer-verlag, 468 (1975), 191-208.


    J. K. Moser, A rapidly covergent iteration method and nonlinear differential equations II, Ann. Scuo. Norm. Sup. Pisa., 20 (1966), 499-535.


    E. Nelson, Topics in Dynamics I. Flows, Princeton University Press, 1969.


    M. Nagumo and K. Isé, On the normal forms of differential equations in the neighborhood of an equilibrium point, Osaka Math. J., 9 (1957), 221-234.


    C. Pugh, On a theorem of P. Hartman, Amer. J. Math., 91 (1969), 363-367.doi: 10.2307/2373513.


    F. Takens, Partially hyperbolic fixed points, Topology, 10 (1971), 133-147.doi: 10.1016/0040-9383(71)90035-8.


    K. Palmer, Qualitative behavior of a system of ODE near an equilibrium point, A generalization of the Hartman- Grobman Theorem, Technical Report, Institute fuer Angewandte Mathematik, University Bonn. 1980.


    R. Pérez-Marco, Linearization of holomorphic germs with resonant linear part, preprint.


    H. Poincaré, Sur le probléme des trois corps et les équations de la dynamique, Acta Math., 13 (1890), 1-270.


    D. Ruelle, Random Smooth Dynamical Systems, Lecture Notes in Rutgers, 1996.


    G. R. Sell, Smooth linearization near a fixed point, Amer. J. Math., 107 (1985), 1035-1091.doi: 10.2307/2374346.


    G. R. Sell, Obstacles to linearization, Diff. Urav., 20 (1984), 446-450.


    C. L. Siegel, Iteration of analytic functions, Ann. Math., 43 (1942), 607-612.doi: 10.2307/1968952.


    C. L. Siegel, Ober die Normalform analytischer Differentialgleichungen in der Nahe einer Gleichgewichtslosung, Nachr . Akad. Wiss. Gottingen, Math.-phys., 1952 (1952), 21-30.


    S. Sternberg, On the behavior of invariant curves near a hyberbolic point of a surface transformation, Amer. J. Math., 77 (1955), 526-534.doi: 10.2307/2372639.


    S. Sternberg, Local contractions and a theorem of Poincaré, Amer. J. Math., 79 (1957), 809-824.doi: 10.2307/2372437.


    T. Wanner, Linearization of random dynamical systems, In C. Jones, U. Kirchgraber and H. O. Walther, editors, Dynamics Reported, Springer-Verlag, New York, 4 (1995), 203-269.


    E. Zehnder, A simple proof of a generalization of a theorem by C. L. Siegel, Lect. Notes in Math., Springer-Verlag, 597 (1977), 855-866.


    W. Zhang and W. Weinian, Sharpness for C1 linearization of planar hyperbolic diffeomorphisms, J. Differential Equations, 257 (2014), 4470-4502.doi: 10.1016/j.jde.2014.08.014.

  • 加载中

Article Metrics

HTML views() PDF downloads(487) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint