# American Institute of Mathematical Sciences

November  2016, 21(9): 3209-3218. doi: 10.3934/dcdsb.2016094

## Decomposition of stochastic flows generated by Stratonovich SDEs with jumps

 1 Department of Mathematics, University of Campinas - UNICAMP, Campinas, 13083-859, Brazil, Brazil, Brazil

Received  October 2015 Revised  March 2016 Published  October 2016

Consider a manifold $M$ endowed locally with a pair of complementary distributions $\Delta^H \oplus \Delta^V=TM$ and let $\text{Diff}(\Delta^H, M)$ and $\text{Diff}(\Delta^V, M)$ be the corresponding Lie subgroups generated by vector fields in the corresponding distributions. We decompose a stochastic flow with jumps, up to a stopping time, as $\varphi_t = \xi_t \circ \psi_t$, where $\xi_t \in \text{Diff}(\Delta^H, M)$ and $\psi_t \in \text{Diff}(\Delta^V, M)$. Our main result provides Stratonovich stochastic differential equations with jumps for each of these two components in the corresponding infinite dimensional Lie groups. We present an extension of the Itô-Ventzel-Kunita formula for stochastic flows with jumps generated by classical Marcus equation (as in Kurtz, Pardoux and Protter [11]). The results here correspond to an extension of Catuogno, da Silva and Ruffino [4], where this decomposition was studied for the continuous case.
Citation: Alison M. Melo, Leandro B. Morgado, Paulo R. Ruffino. Decomposition of stochastic flows generated by Stratonovich SDEs with jumps. Discrete and Continuous Dynamical Systems - B, 2016, 21 (9) : 3209-3218. doi: 10.3934/dcdsb.2016094
##### References:
 [1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2004. doi: 10.1017/CBO9780511755323. [2] J. M. Bismut, Mécanique Aléatoire, Lecture Notes in Math., 866. Springer-Verlag, Berlin-New York, 1981. [3] P. J. Catuogno, F. B. da Silva and P. R. Ruffino, Decomposition of stochastic flows with automorphism of subbundles component, Stochastics and Dynamics, 12 (2012), 1150013, 15 pp. doi: 10.1142/S0219493712003705. [4] P. J. Catuogno, F. B. da Silva and P. R. Ruffino, Decomposition of stochastic flows in manifolds with complementary distributions, Stochastics and Dynamics, 13 (2013), 1350009, 12 pp. doi: 10.1142/S0219493713500093. [5] F. Colonius and W. Kliemann, The Dynamics of Control, Systems and Control: Foundations and Applications. Birkhäuser Boston, Inc., Boston, MA, 2000. doi: 10.1007/978-1-4612-1350-5. [6] F. Colonius and P. R. Ruffino, Nonlinear Iwasawa decomposition of control flows, Discrete Continuous Dyn. Systems, (Serie A) 18 (2007), 339-354. doi: 10.3934/dcds.2007.18.339. [7] I. G. Gargate and P. R. Ruffino, An averaging principle for diffusions in foliated spaces, The Annals of Probab., 44 (2016), 567-588. doi: 10.1214/14-AOP982. [8] H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, in: École d'Eté de Probabilités de Saint-Flour XII - 1982, ed. P.L. Hennequin, Lecture Notes on Maths., Springer, 1097 (1984), 143-303. doi: 10.1007/BFb0099433. [9] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge, 1997. [10] X.-M. Li, An averaging principle for a completely integrable stochastic Hamiltonian system, Nonlinearity, 21 (2008), 803-822. doi: 10.1088/0951-7715/21/4/008. [11] T. Kurtz, E. Pardoux and P. Protter, Stratonovich stochastic differential equations driven by general semimartingales, Annales de l'I.H.P., section B, 31 (1995), 351-377. [12] M. Liao, Decomposition of stochastic flows and Lyapunov exponents, Probab. Theory Rel. Fields, 117 (2000), 589-607. doi: 10.1007/PL00008736. [13] J. Milnor, Remarks on infinite dimensional lie groups, In: Relativity, Groups and Topology II, Les Houches Session XL, 1983, North Holland, Amsterdam, 1984, 1007-1057. [14] K.-H. Neeb, Infinite Dimesional Lie Groups, Monastir Summer Schoool, 2009. Available from hal.archives-ouvertes.fr/docs/00/39/.../CoursKarl-HermannNeeb.pdf. [15] H. Omori, Infinite Dimensional Lie Groups, Translations of Math Monographs 158, AMS, 1997. [16] L. Morgado and P. Ruffino, Extension of time for decomposition of stochastic flows in spaces with complementary foliations, Electron. Comm. Probab., 20 (2015), 9pp. doi: 10.1214/ECP.v20-3762. [17] P. Ruffino, Decomposition of stochastic flow and rotation matrix, Stochastics and Dynamics, 2 (2002), 93-108. doi: 10.1142/S0219493702000327. [18] M. Patrão and L. A. B. San Martin, Semiflows on topological spaces: Chain transitivity and semigroups, J. Dynam. Differential Equations 19 (2007), 155-180. doi: 10.1007/s10884-006-9032-3. [19] K. Twardowska, Approximation theorems of Wong-Zakai type for stochastic differential equations in infinite dimensions, Dissertationes Math., (Rozprawy Mat.) 325 (1993), 54 pp.

show all references

##### References:
 [1] D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, 2004. doi: 10.1017/CBO9780511755323. [2] J. M. Bismut, Mécanique Aléatoire, Lecture Notes in Math., 866. Springer-Verlag, Berlin-New York, 1981. [3] P. J. Catuogno, F. B. da Silva and P. R. Ruffino, Decomposition of stochastic flows with automorphism of subbundles component, Stochastics and Dynamics, 12 (2012), 1150013, 15 pp. doi: 10.1142/S0219493712003705. [4] P. J. Catuogno, F. B. da Silva and P. R. Ruffino, Decomposition of stochastic flows in manifolds with complementary distributions, Stochastics and Dynamics, 13 (2013), 1350009, 12 pp. doi: 10.1142/S0219493713500093. [5] F. Colonius and W. Kliemann, The Dynamics of Control, Systems and Control: Foundations and Applications. Birkhäuser Boston, Inc., Boston, MA, 2000. doi: 10.1007/978-1-4612-1350-5. [6] F. Colonius and P. R. Ruffino, Nonlinear Iwasawa decomposition of control flows, Discrete Continuous Dyn. Systems, (Serie A) 18 (2007), 339-354. doi: 10.3934/dcds.2007.18.339. [7] I. G. Gargate and P. R. Ruffino, An averaging principle for diffusions in foliated spaces, The Annals of Probab., 44 (2016), 567-588. doi: 10.1214/14-AOP982. [8] H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, in: École d'Eté de Probabilités de Saint-Flour XII - 1982, ed. P.L. Hennequin, Lecture Notes on Maths., Springer, 1097 (1984), 143-303. doi: 10.1007/BFb0099433. [9] H. Kunita, Stochastic Flows and Stochastic Differential Equations, Cambridge University Press, Cambridge, 1997. [10] X.-M. Li, An averaging principle for a completely integrable stochastic Hamiltonian system, Nonlinearity, 21 (2008), 803-822. doi: 10.1088/0951-7715/21/4/008. [11] T. Kurtz, E. Pardoux and P. Protter, Stratonovich stochastic differential equations driven by general semimartingales, Annales de l'I.H.P., section B, 31 (1995), 351-377. [12] M. Liao, Decomposition of stochastic flows and Lyapunov exponents, Probab. Theory Rel. Fields, 117 (2000), 589-607. doi: 10.1007/PL00008736. [13] J. Milnor, Remarks on infinite dimensional lie groups, In: Relativity, Groups and Topology II, Les Houches Session XL, 1983, North Holland, Amsterdam, 1984, 1007-1057. [14] K.-H. Neeb, Infinite Dimesional Lie Groups, Monastir Summer Schoool, 2009. Available from hal.archives-ouvertes.fr/docs/00/39/.../CoursKarl-HermannNeeb.pdf. [15] H. Omori, Infinite Dimensional Lie Groups, Translations of Math Monographs 158, AMS, 1997. [16] L. Morgado and P. Ruffino, Extension of time for decomposition of stochastic flows in spaces with complementary foliations, Electron. Comm. Probab., 20 (2015), 9pp. doi: 10.1214/ECP.v20-3762. [17] P. Ruffino, Decomposition of stochastic flow and rotation matrix, Stochastics and Dynamics, 2 (2002), 93-108. doi: 10.1142/S0219493702000327. [18] M. Patrão and L. A. B. San Martin, Semiflows on topological spaces: Chain transitivity and semigroups, J. Dynam. Differential Equations 19 (2007), 155-180. doi: 10.1007/s10884-006-9032-3. [19] K. Twardowska, Approximation theorems of Wong-Zakai type for stochastic differential equations in infinite dimensions, Dissertationes Math., (Rozprawy Mat.) 325 (1993), 54 pp.
 [1] Stefan Haller, Tomasz Rybicki, Josef Teichmann. Smooth perfectness for the group of diffeomorphisms. Journal of Geometric Mechanics, 2013, 5 (3) : 281-294. doi: 10.3934/jgm.2013.5.281 [2] Fritz Colonius, Paulo Régis C. Ruffino. Nonlinear Iwasawa decomposition of control flows. Discrete and Continuous Dynamical Systems, 2007, 18 (2&3) : 339-354. doi: 10.3934/dcds.2007.18.339 [3] Livio Flaminio, Giovanni Forni, Federico Rodriguez Hertz. Invariant distributions for homogeneous flows and affine transformations. Journal of Modern Dynamics, 2016, 10: 33-79. doi: 10.3934/jmd.2016.10.33 [4] L. Bakker, G. Conner. A class of generalized symmetries of smooth flows. Communications on Pure and Applied Analysis, 2004, 3 (2) : 183-195. doi: 10.3934/cpaa.2004.3.183 [5] Wen-Ching Lien, Yu-Yu Liu, Chen-Chang Peng. Smooth Transonic Flows Around Cones. Networks and Heterogeneous Media, 2022  doi: 10.3934/nhm.2022028 [6] Christian Bonatti, Nancy Guelman. Axiom A diffeomorphisms derived from Anosov flows. Journal of Modern Dynamics, 2010, 4 (1) : 1-63. doi: 10.3934/jmd.2010.4.1 [7] Víctor Ayala, Adriano Da Silva, Philippe Jouan. Jordan decomposition and the recurrent set of flows of automorphisms. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1543-1559. doi: 10.3934/dcds.2020330 [8] Woochul Jung, Ngocthach Nguyen, Yinong Yang. Spectral decomposition for rescaling expansive flows with rescaled shadowing. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2267-2283. doi: 10.3934/dcds.2020113 [9] Dmitri Scheglov. Absence of mixing for smooth flows on genus two surfaces. Journal of Modern Dynamics, 2009, 3 (1) : 13-34. doi: 10.3934/jmd.2009.3.13 [10] Oliver Butterley, Carlangelo Liverani. Smooth Anosov flows: Correlation spectra and stability. Journal of Modern Dynamics, 2007, 1 (2) : 301-322. doi: 10.3934/jmd.2007.1.301 [11] Sze-Bi Hsu, Bernold Fiedler, Hsiu-Hau Lin. Classification of potential flows under renormalization group transformation. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 437-446. doi: 10.3934/dcdsb.2016.21.437 [12] Diogo Poças, Bartosz Protas. Transient growth in stochastic Burgers flows. Discrete and Continuous Dynamical Systems - B, 2018, 23 (6) : 2371-2391. doi: 10.3934/dcdsb.2018052 [13] Livio Flaminio, Giovanni Forni. Orthogonal powers and Möbius conjecture for smooth time changes of horocycle flows. Electronic Research Announcements, 2019, 26: 16-23. doi: 10.3934/era.2019.26.002 [14] Adam Kanigowski, Davide Ravotti. Polynomial 3-mixing for smooth time-changes of horocycle flows. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5347-5371. doi: 10.3934/dcds.2020230 [15] David Ralston, Serge Troubetzkoy. Ergodic infinite group extensions of geodesic flows on translation surfaces. Journal of Modern Dynamics, 2012, 6 (4) : 477-497. doi: 10.3934/jmd.2012.6.477 [16] Michael Field, Ian Melbourne, Matthew Nicol, Andrei Török. Statistical properties of compact group extensions of hyperbolic flows and their time one maps. Discrete and Continuous Dynamical Systems, 2005, 12 (1) : 79-96. doi: 10.3934/dcds.2005.12.79 [17] Boling Guo, Yongqian Han, Guoli Zhou. Random attractor for the 2D stochastic nematic liquid crystals flows. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2349-2376. doi: 10.3934/cpaa.2019106 [18] Tomás Caraballo, Maria-José Garrido-Atienza, Javier López-de-la-Cruz, Alain Rapaport. Modeling and analysis of random and stochastic input flows in the chemostat model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3591-3614. doi: 10.3934/dcdsb.2018280 [19] Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $\Lambda$-convex gradient flows. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328 [20] Isaac A. García, Jaume Giné, Susanna Maza. Linearization of smooth planar vector fields around singular points via commuting flows. Communications on Pure and Applied Analysis, 2008, 7 (6) : 1415-1428. doi: 10.3934/cpaa.2008.7.1415

2020 Impact Factor: 1.327