-
Previous Article
The vanishing surface tension limit for the Hele-Shaw problem
- DCDS-B Home
- This Issue
-
Next Article
Global classical solutions for mass-conserving, (super)-quadratic reaction-diffusion systems in three and higher space dimensions
Error estimates of the aggregation-diffusion splitting algorithms for the Keller-Segel equations
1. | Department of Mathematical Sciences, Tsinghua University, Beijing, 100084 |
2. | Department of Physics and Department of Mathematics, Duke University, Durham, NC 27708 |
References:
[1] |
J. T. Beale and A. Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations, Mathematics of Computation, 37 (1981), 243-259.
doi: 10.1090/S0025-5718-1981-0628693-0. |
[2] |
M. Botchev, I.Faragó and Á. Havasi, Testing weighted splitting schemes on a one-column transport-chemistry model, Large-Scale Scientific Computing, Volume 2907 of the series Lecture Notes in Computer Science, (2014), 295-302.
doi: 10.1007/978-3-540-24588-9_33. |
[3] |
L. C. Evans, Partial Differential Equations, $2^{nd}$ edition, American Mathematical Society, 2010.
doi: 10.1090/gsm/019. |
[4] |
A. Gerisch and J. G. Verwer, Operator splitting and approximate factorization for taxis-diffusion-reaction models, Applied Numerical Mathematics, 42 (2002), 159-176.
doi: 10.1016/S0168-9274(01)00148-9. |
[5] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.
doi: 10.1007/978-3-642-61798-0. |
[6] |
J. Goodman, Convergence of the random vortex method, Communications on Pure and Applied Mathematics, 40 (1987), 189-220.
doi: 10.1002/cpa.3160400204. |
[7] |
H. Huang and J.-G. Liu, Error estimate of a random particle blob method for the Keller-Segel equation, Mathematics of Computation, to appear. |
[8] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[9] |
D. Lanser, J. G. Blom and J. G. Verwer, Time integration of the shallow water equations in spherical geometry, Journal of Computational Physics, 171 (2001), 373-393.
doi: 10.1006/jcph.2001.6802. |
[10] |
E. H. Lieb and M. Loss, Analysis, $2^{nd}$ edition,American Mathematical Society, 2001.
doi: 10.1090/gsm/014. |
[11] |
J.-G. Liu, L. Wang and Z. Zhou, Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations, Mathematics of Computation, to appear. |
[12] |
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511613203. |
[13] |
R. I. McLachlan, G. Quispel and W. Reinout, Splitting methods, Acta Numerica, 11 (2002), 341-434.
doi: 10.1017/S0962492902000053. |
[14] |
F. Müller, Splitting error estimation for micro-physical-multiphase chemical systems in meso-scale air quality models, Atmospheric Environment, 35 (2001), 5749-5764.
doi: 10.1016/S1352-2310(01)00368-5. |
[15] |
B. Perthame, Transport Equations in Biology, Springer, New York, 2007.
doi: 10.1007/978-3-7643-7842-4. |
[16] |
G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, $3^{rd}$ edition,Oxford University Press, 1985.
doi: 10.1007/978-1-4612-0873-0. |
[17] |
G. Strang, On the construction and comparison of difference schemes, SIAM Journal on Numerical Analysis, 5 (1968), 506-517.
doi: 10.1137/0705041. |
[18] |
M. Taylor, Partial Differential Equations II: Qualitative Studies of Linear Equations, Springer, New York, 2011.
doi: 10.1007/978-1-4419-7052-7. |
[19] |
M. Taylor, Partial Differential Equations III: Nonlinear Equations, Springer, New York, 2011.
doi: 10.1007/978-1-4419-7049-7. |
show all references
References:
[1] |
J. T. Beale and A. Majda, Rates of convergence for viscous splitting of the Navier-Stokes equations, Mathematics of Computation, 37 (1981), 243-259.
doi: 10.1090/S0025-5718-1981-0628693-0. |
[2] |
M. Botchev, I.Faragó and Á. Havasi, Testing weighted splitting schemes on a one-column transport-chemistry model, Large-Scale Scientific Computing, Volume 2907 of the series Lecture Notes in Computer Science, (2014), 295-302.
doi: 10.1007/978-3-540-24588-9_33. |
[3] |
L. C. Evans, Partial Differential Equations, $2^{nd}$ edition, American Mathematical Society, 2010.
doi: 10.1090/gsm/019. |
[4] |
A. Gerisch and J. G. Verwer, Operator splitting and approximate factorization for taxis-diffusion-reaction models, Applied Numerical Mathematics, 42 (2002), 159-176.
doi: 10.1016/S0168-9274(01)00148-9. |
[5] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2001.
doi: 10.1007/978-3-642-61798-0. |
[6] |
J. Goodman, Convergence of the random vortex method, Communications on Pure and Applied Mathematics, 40 (1987), 189-220.
doi: 10.1002/cpa.3160400204. |
[7] |
H. Huang and J.-G. Liu, Error estimate of a random particle blob method for the Keller-Segel equation, Mathematics of Computation, to appear. |
[8] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[9] |
D. Lanser, J. G. Blom and J. G. Verwer, Time integration of the shallow water equations in spherical geometry, Journal of Computational Physics, 171 (2001), 373-393.
doi: 10.1006/jcph.2001.6802. |
[10] |
E. H. Lieb and M. Loss, Analysis, $2^{nd}$ edition,American Mathematical Society, 2001.
doi: 10.1090/gsm/014. |
[11] |
J.-G. Liu, L. Wang and Z. Zhou, Positivity-preserving and asymptotic preserving method for 2D Keller-Segal equations, Mathematics of Computation, to appear. |
[12] |
A. J. Majda and A. L. Bertozzi, Vorticity and Incompressible Flow, Cambridge University Press, 2002.
doi: 10.1017/CBO9780511613203. |
[13] |
R. I. McLachlan, G. Quispel and W. Reinout, Splitting methods, Acta Numerica, 11 (2002), 341-434.
doi: 10.1017/S0962492902000053. |
[14] |
F. Müller, Splitting error estimation for micro-physical-multiphase chemical systems in meso-scale air quality models, Atmospheric Environment, 35 (2001), 5749-5764.
doi: 10.1016/S1352-2310(01)00368-5. |
[15] |
B. Perthame, Transport Equations in Biology, Springer, New York, 2007.
doi: 10.1007/978-3-7643-7842-4. |
[16] |
G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, $3^{rd}$ edition,Oxford University Press, 1985.
doi: 10.1007/978-1-4612-0873-0. |
[17] |
G. Strang, On the construction and comparison of difference schemes, SIAM Journal on Numerical Analysis, 5 (1968), 506-517.
doi: 10.1137/0705041. |
[18] |
M. Taylor, Partial Differential Equations II: Qualitative Studies of Linear Equations, Springer, New York, 2011.
doi: 10.1007/978-1-4419-7052-7. |
[19] |
M. Taylor, Partial Differential Equations III: Nonlinear Equations, Springer, New York, 2011.
doi: 10.1007/978-1-4419-7049-7. |
[1] |
Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623 |
[2] |
Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153 |
[3] |
Hafedh Bousbih. Global weak solutions for a coupled chemotaxis non-Newtonian fluid. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 907-929. doi: 10.3934/dcdsb.2018212 |
[4] |
Jisheng Kou, Huangxin Chen, Xiuhua Wang, Shuyu Sun. A linear, decoupled and positivity-preserving numerical scheme for an epidemic model with advection and diffusion. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021094 |
[5] |
Xin Xu. Existence of monotone positive solutions of a neighbour based chemotaxis model and aggregation phenomenon. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4327-4348. doi: 10.3934/cpaa.2020195 |
[6] |
Alan Mackey, Theodore Kolokolnikov, Andrea L. Bertozzi. Two-species particle aggregation and stability of co-dimension one solutions. Discrete and Continuous Dynamical Systems - B, 2014, 19 (5) : 1411-1436. doi: 10.3934/dcdsb.2014.19.1411 |
[7] |
Laurent Desvillettes, Michèle Grillot, Philippe Grillot, Simona Mancini. Study of a degenerate reaction-diffusion system arising in particle dynamics with aggregation effects. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4675-4692. doi: 10.3934/dcds.2018205 |
[8] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic and Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[9] |
José Antonio Carrillo, Yanghong Huang, Francesco Saverio Patacchini, Gershon Wolansky. Numerical study of a particle method for gradient flows. Kinetic and Related Models, 2017, 10 (3) : 613-641. doi: 10.3934/krm.2017025 |
[10] |
Yuri Kozitsky, Krzysztof Pilorz. Random jumps and coalescence in the continuum: Evolution of states of an infinite particle system. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 725-752. doi: 10.3934/dcds.2020059 |
[11] |
Daniel Peterseim. Robustness of finite element simulations in densely packed random particle composites. Networks and Heterogeneous Media, 2012, 7 (1) : 113-126. doi: 10.3934/nhm.2012.7.113 |
[12] |
Roberto Camassa, Pao-Hsiung Chiu, Long Lee, W.-H. Sheu. A particle method and numerical study of a quasilinear partial differential equation. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1503-1515. doi: 10.3934/cpaa.2011.10.1503 |
[13] |
Yanfei Wang, Qinghua Ma. A gradient method for regularizing retrieval of aerosol particle size distribution function. Journal of Industrial and Management Optimization, 2009, 5 (1) : 115-126. doi: 10.3934/jimo.2009.5.115 |
[14] |
Xin Li, Feng Bao, Kyle Gallivan. A drift homotopy implicit particle filter method for nonlinear filtering problems. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 727-746. doi: 10.3934/dcdss.2021097 |
[15] |
Raffaele D’Ambrosio, Giuseppe De Martino, Beatrice Paternoster. A symmetric nearly preserving general linear method for Hamiltonian problems. Conference Publications, 2015, 2015 (special) : 330-339. doi: 10.3934/proc.2015.0330 |
[16] |
Sohana Jahan. Supervised distance preserving projection using alternating direction method of multipliers. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1783-1799. doi: 10.3934/jimo.2019029 |
[17] |
Anouar El Harrak, Amal Bergam, Tri Nguyen-Huu, Pierre Auger, Rachid Mchich. Application of aggregation of variables methods to a class of two-time reaction-diffusion-chemotaxis models of spatially structured populations with constant diffusion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2163-2181. doi: 10.3934/dcdss.2021055 |
[18] |
Harish Garg, Dimple Rani. Multi-criteria decision making method based on Bonferroni mean aggregation operators of complex intuitionistic fuzzy numbers. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2279-2306. doi: 10.3934/jimo.2020069 |
[19] |
Frederic Heihoff. Global mass-preserving solutions for a two-dimensional chemotaxis system with rotational flux components coupled with a full Navier–Stokes equation. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4703-4719. doi: 10.3934/dcdsb.2020120 |
[20] |
Mihaela Negreanu, J. Ignacio Tello. On a comparison method to reaction-diffusion systems and its applications to chemotaxis. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2669-2688. doi: 10.3934/dcdsb.2013.18.2669 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]