Citation: |
[1] |
D. M. Ambrose, Well-posedness of two-phase Hele-Shaw flow without surface tension, European J. Appl. Math., 15 (2004), 597-607.doi: 10.1017/S0956792504005662. |
[2] |
S. N. Antontsev, C. Gonçalves and A. M. Meirmanov, Local existence of classical solutions to the well-posed Hele-Shaw problem, Port. Math., 59 (2002), 435-452. |
[3] |
________, Exact estimates for the classical solutions to the free-boundary problem in the Hele-Shaw cell, Adv. Differential Equations, 8 (2003), 1259-1280. |
[4] |
H. G. W. Begehr and R. P. Gilbert, Non-Newtonian Hele-Shaw flows in $n\geq 2$ dimensions, Nonlinear Anal., 11 (1987), 17-47.doi: 10.1016/0362-546X(87)90024-1. |
[5] |
C.-H. A. Cheng, D. Coutand and S. Shkoller, Global existence and decay for solutions of the Hele-Shaw flow with injection, Interfaces Free Bound, 16 (2014), 297-338.doi: 10.4171/IFB/321. |
[6] |
S. Choi, D. Jerison and I. Kim, Regularity for the one-phase hele-shaw problem from a lipschitz initial surface, American journal of mathematics, 129 (2007), 527-582.doi: 10.1353/ajm.2007.0008. |
[7] |
________, Local regularization of the one-phase hele-shaw flow, Indiana University Mathematics Journal, 58 (2009), p2765. |
[8] |
P. Constantin and L. P. Kadanoff, Dynamics of a complex interface, Phys. D, 47 (1991), 450-460.doi: 10.1016/0167-2789(91)90042-8. |
[9] |
P. Constantin and M. Pugh, Global solutions for small data to the Hele-Shaw problem, Nonlinearity, 6 (1993), 393-415.doi: 10.1088/0951-7715/6/3/004. |
[10] |
C. M. Elliott and V. Janovskỳ, A variational inequality approach to hele-shaw flow with a moving boundary, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 88 (1981), 93-107.doi: 10.1017/S0308210500017315. |
[11] |
J. Escher and G. Simonett, On Hele-Shaw models with surface tension, Math. Res. Lett., 3 (1996), 467-474.doi: 10.4310/MRL.1996.v3.n4.a5. |
[12] |
________, Classical solutions for Hele-Shaw models with surface tension, Adv. Differential Equations, 2 (1997), 619-642. |
[13] |
________, Classical solutions of multidimensional Hele-Shaw models, SIAM J. Math. Anal., 28 (1997), 1028-1047. |
[14] |
L. A. Galin, Unsteady filtration with a free surface, Dokl. Akad. Nauk USSR, 47 (1945), 246-249. |
[15] |
L. Grafakos, Classical Fourier Analysis, vol. 2, Springer, 2008. |
[16] |
B. Gustafsson, On a differential equation arising in a Hele-Shaw flow moving boundary problem, Ark. Mat., 22 (1984), 251-268.doi: 10.1007/BF02384382. |
[17] |
B. Gustafsson and A. Vasil'ev, Conformal and Potential Analysis in Hele-Shaw Cells, Birkhäuser, 2006. |
[18] |
M. Hadzic and S. Shkoller, Well-posedness for the classical stefan problem and the zero surface tension limit, arXiv preprint, arXiv:1112.5817, (2011). |
[19] |
D. Jerison and I. Kim, The one-phase hele-shaw problem with singularities, The Journal of Geometric Analysis, 15 (2005), 641-667.doi: 10.1007/BF02922248. |
[20] |
I. Kim, Long time regularity of solutions of the hele-shaw problem, Nonlinear Analysis: Theory, Methods & Applications, 64 (2006), 2817-2831.doi: 10.1016/j.na.2005.09.021. |
[21] |
F. W. King, Hilbert Transforms, vol. 1, Cambridge Univ. Press, 2009. |
[22] |
________, Hilbert Transforms, vol. 2, Cambridge Univ. Press, 2009. |
[23] |
N. V. Krylov, Lectures on Elliptic and Parabolic Equations in Sobolev Spaces, vol. 96, Amer. Math. Soc., 2008.doi: 10.1090/gsm/096. |
[24] |
P. P. Kufarev, A solution of the boundary problem for an oil well in a circle, Doklady Akad. Nauk SSSR (N. S.), 60 (1948), 1333-1334. |
[25] |
A. M. Meirmanov and B. Zaltzman, Global in time solution to the Hele-Shaw problem with a change of topology, European J. Appl. Math., 13 (2002), 431-447.doi: 10.1017/S0956792502004874. |
[26] |
P. Y. Polubarinova-Kochina, On a problem of the motion of the contour of a petroleum shell, Dokl. Akad. Nauk USSR, 47 (1945), 254-257. |
[27] |
G. Prokert, Existence results for Hele-Shaw flow driven by surface tension, European J. Appl. Math., 9 (1998), 195-221.doi: 10.1017/S0956792597003276. |
[28] |
M. Reissig and L. von Wolfersdorf, A simplified proof for a moving boundary problem for Hele-Shaw flows in the plane, Ark. Mat., 31 (1993), 101-116.doi: 10.1007/BF02559501. |
[29] |
M. Sakai, Regularity of boundaries of quadrature domains in two dimensions, SIAM journal on mathematical analysis, 24 (1993), 341-364.doi: 10.1137/0524023. |
[30] |
S. Tanveer, Evolution of Hele-Shaw interface for small surface tension, Philos. Trans. Roy. Soc. London Ser. A, 343 (1993), 155-204.doi: 10.1098/rsta.1993.0049. |
[31] |
F.-R. Tian, Hele-Shaw problems in multidimensional spaces, J. Nonlinear Sci., 10 (2000), 275-290.doi: 10.1007/s003329910011. |
[32] |
H. S. Hele Shaw, The flow of water, Nature, 58 (1898), 34-36. |
[33] |
A. Vasil'ev, From the Hele-Shaw experiment to integrable systems: A historical overview, Complex Anal. Oper. Theory, 3 (2009), 551-585.doi: 10.1007/s11785-008-0104-8. |
[34] |
Y. P. Vinogradov and P. P. Kufarev, On a problem of filtration, Akad. Nauk SSSR Prikl. Mat. Meh., 12 (1948), 181-198. |
[35] |
E. Vondenhoff, Large time behaviour of Hele-Shaw flow with injection or suction for perturbations of balls in $\mathbbR^N$, IMA J. Appl. Math., 76 (2011), 219-241.doi: 10.1093/imamat/hxp037. |
[36] |
J. Ye and S. Tanveer, Global existence for a translating near-circular Hele-Shaw bubble with surface tension, SIAM J. Math. Anal., 43 (2011), 457-506.doi: 10.1137/100786332. |