• Previous Article
    Optimal contraception control for a nonlinear population model with size structure and a separable mortality
  • DCDS-B Home
  • This Issue
  • Next Article
    Global attracting set, exponential decay and stability in distribution of neutral SPDEs driven by additive $\alpha$-stable processes
December  2016, 21(10): 3575-3602. doi: 10.3934/dcdsb.2016111

Hopf bifurcation in a model of TGF-$\beta$ in regulation of the Th 17 phenotype

1. 

School of Biological Sciences, Seoul National University, Seoul 08826, South Korea

2. 

Division of Mathematical Models, National Institute for Mathematical Sciences, Daejeon 34047, South Korea

3. 

Department of Mathematics, Konkuk University, Seoul, 05029, South Korea

Received  September 2015 Revised  September 2016 Published  November 2016

Airway exposure of lipopolysaccharide (LPS) is shown to regulate type I and type II helper T cell induced asthma. While high doses of LPS derive Th1- or Th17-immune responses, low LPS levels lead to Th2 responses. In this paper, we analyze a mathematical model of Th1/Th2/Th17 asthma regulation suggested by Lee (S. Lee, H.J. Hwang, and Y. Kim, Modeling the role of TGF-$\beta$ in regulation of the Th17 phenotype in the LPS-driven immune system, Bull Math Biol., 76 (5), 1045-1080, 2014) and show that the system can undergo a Hopf bifurcation at a steady state of the Th17 phenotype for high LPS levels in the presence of time delays in inhibition pathways of two key regulators: IL-4/Th2 activities ($H$) and TGF-$\beta$ levels ($G$). The time delays affect the phenotypic switches among the Th1, Th2, and Th17 phenotypes in response to time-dependent LPS doses via nonlinear crosstalk between $H$ and $G$. An extended reaction-diffusion model also predicts coexistence of these phenotypes under various biochemical and bio-mechanical conditions in the heterogeneous microenvironment.
Citation: Jisun Lim, Seongwon Lee, Yangjin Kim. Hopf bifurcation in a model of TGF-$\beta$ in regulation of the Th 17 phenotype. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3575-3602. doi: 10.3934/dcdsb.2016111
References:
[1]

S. Al-Muhsen, S. Letuve, A. Vazquez-Tello, M. A. Pureza, H. Al-Jahdali, A. S. Bahammam, Q. Hamid and R. Halwani, Th17 cytokines induce pro-fibrotic cytokines release from human eosinophils, Respir. Res., 14 (2013), p34. doi: 10.1186/1465-9921-14-34.

[2]

T. Alarcón, H. M. Byrne and P. K. Maini, Towards whole-organ modelling of tumour growth, Prog. Biophys. Mol. Biol., 85 (2004), 451-472.

[3]

J. F. Alcorn, C. R. Crowe and J. K. Kolls, $T_H$17 cells in asthma and COPD, Annu. Rev. Physiol., 72 (2010), 495-516.

[4]

O. Arino, M. L. Hbid and E. Ait Dads, Delay Differential Equations and Applications, Springer Netherlands, 2006. doi: 10.1007/1-4020-3647-7.

[5]

K. J. Baek, J. Y. Cho, P. Rosenthal, L. E. C. Alexander, V. Nizet and D. H. Broide, Hypoxia potentiates allergen induction of HIF-1$\alpha$, chemokines, airway inflammation, TGF-$\beta$1, and airway remodeling in a mouse model, Clin. Immunol., 147 (2013), 27-37.

[6]

R. L. Bar-Or and L. A. Segel, On the role of a possible dialogue between cytokine and TCR-presentation mechanisms in the regulation of autoimmune disease, J. Theor. Biol., 190 (1998), 161-178. doi: 10.1006/jtbi.1997.0545.

[7]

U. Behn, H. Dambeck and G. Metzner, Modeling Th1-Th2 regulation, allergy, and hyposensitization, in Dynamical Modeling in Biotechnology, World Scientific, 2001, chapter 11, 227-243. doi: 10.1142/9789812813053_0011.

[8]

B. S. Bochner, B. J. Undem and L. M. Lichtenstein, Immunological aspects of allergic asthma, Annu. Rev. Immunol., 12 (1994), 295-335. doi: 10.1146/annurev.iy.12.040194.001455.

[9]

R. E. Callard and A. J. Yates, Immunology and mathematics: Crossing the divide, Immunology, 115 (2005), 21-33. doi: 10.1111/j.1365-2567.2005.02142.x.

[10]

J. Carneiro, J. Stewart, A. Coutinho and G. Coutinho, The ontogeny of class-regulation of CD4$^+$ T lymphocyte populations, Int. Immunol., 7 (1995), 1265-1277. doi: 10.1093/intimm/7.8.1265.

[11]

C. Clemedson and A. Nelson, General biology: The adult organism, in Mechanisms in Radiobiology: Multicellular Organisms (eds. M. Errera and A. Forssberg), Elsevier, 1960, 95-205. doi: 10.1016/B978-1-4832-2829-7.50010-1.

[12]

L. Cosmi, F. Liotta, E. Maggi, S. Romagnani and F. Annunziato, Th17 cells: New players in asthma pathogenesis, Allergy, 66 (2011), 989-998. doi: 10.1111/j.1398-9995.2011.02576.x.

[13]

E. Cutz, H. Levison and D. M. Cooper, Ultrastructure of airways in children with asthma, Histopathology, 2 (1978), 407-421. doi: 10.1111/j.1365-2559.1978.tb01735.x.

[14]

C. Dong, Diversification of T-helper-cell lineages: Finding the family root of IL-17-producing cells, Nat. Rev. Immunol., 6 (2006), 329-334. doi: 10.1038/nri1807.

[15]

C. Dong, $T_H$17 cells in development: An updated view of their molecular identity and genetic programming, Nat. Rev. Immunol., 8 (2008), 337-348.

[16]

S. C. Eisenbarth, D. A. Piggott, J. W. Huleatt, I. Visintin, C. A. Herrick and K. Bottomly, Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen, J. Exp. Med., 196 (2002), 1645-1651. doi: 10.1084/jem.20021340.

[17]

R. L. Elliott and G. C. Blobe, Role of transforming growth factor beta in human cancer, J. Clin. Oncol., 23 (2005), 2078-2093.

[18]

M. A. Fishman and A. S. Perelson, Th1/Th2 differentiation and cross-regulation, Bull. Math. Biol., 61 (1999), 403-436. doi: 10.1006/bulm.1998.0074.

[19]

J. E. Gereda, D. Y. M. Leung, A. Thatayatikom, J. E. Streib, M. R. Price, M. D. Klinnert and A. H. Liu, Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma, Lancet, 355 (2000), 1680-1683. doi: 10.1016/S0140-6736(00)02239-X.

[20]

L. Gorelik, S. Constant and R. A. Flavell, Mechanism of transforming growth factor $\beta$-induced inhibition of T helper type 1 differentiation, J. Exp. Med., 195 (2002), 1499-1505.

[21]

L. Gorelik and R. A. Flavell, Abrogation of TGF$\beta$ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease, Immunity, 12 (2000), 171-181.

[22]

F. Gross, G. Metznerb and U. Behn, Mathematical modelling of allergy and specific immunotherapy: Th1-Th2-Treg interactions, J. Theor. Biol., 269 (2011), 70-78. doi: 10.1016/j.jtbi.2010.10.013.

[23]

G. Grünig, M. Warnock, A. E. Wakil, R. Venkayya, F. Brombacher, D. M. Rennick, D. Sheppard, M. Mohrs, D. D. Donaldson, R. M. Locksley and D. B. Corry, Requirement for IL-13 independently of IL-4 in experimental asthma, Science, 282 (1998), 2261-2263.

[24]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42 of Applied Mathematical Sciences, 1st edition, Springer-Verlag New York, 1983. doi: 10.1007/978-1-4612-1140-2.

[25]

I. Gutcher and B. Becher, APC-derived cytokines and T cell polarization in autoimmune inflammation, J. Clin. Invest., 117 (2007), 1119-1127. doi: 10.1172/JCI31720.

[26]

J. K. Hale, Theory of Functional Differential Equations, vol. 3 of Applied Mathematical Sciences, Springer-Verlag New York, 1977.

[27]

Q. Hamid and M. Tulic, Immunobiology of asthma, Annu. Rev. Physiol., 71 (2009), 489-507. doi: 10.1146/annurev.physiol.010908.163200.

[28]

L. E. Harrington, R. D. Hatton, P. R. Mangan, H. Turner, T. L. Murphy, K. M. Murphy and C. T. Weaver, Interleukin 17-producing $CD4^+$ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages, Nat. Immunol., 6 (2005), 1123-1132. doi: 10.1038/ni1254.

[29]

L. E. Harrington, P. R. Mangan and C. T. Weaver, Expanding the effector CD4 T-cell repertoire: The Th17 lineage, Curr. Opin. Immunol., 18 (2006), 349-356. doi: 10.1016/j.coi.2006.03.017.

[30]

B. D. Hassard, N. D. Kazarinoff and Y.-H. Wan, Theory and Applications of Hopf Bifurcation, vol. 41 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1981.

[31]

N. A. Hosken, K. Shibuya, A. W. Heath, K. M. Murphy and A. O'Garra, The effect of antigen dose on CD4$^+$ T helper cell phenotype development in a T cell receptor-$\alpha\beta$-transgenic model, J. Exp. Med., 182 (1995), 1579-1584. doi: 10.1084/jem.182.5.1579.

[32]

H. Jiang and L. Chess, An integrated view of suppressor T cell subsets in immunoregulation, J. Clin. Invest., 114 (2004), 1198-1208. doi: 10.1172/JCI23411.

[33]

Y. Kim, H. Lee, N. Dmitrieva, J. Kim, B. Kaur and A. Friedman, Choindroitinase ABC I-mediated enhancement of oncolytic virus spread and anti-tumor efficacy: A mathematical model, PLoS One, 9 (2014), e102499. doi: 10.1371/journal.pone.0102499.

[34]

Y. Kim, S. Lee, Y. Kim, Y. Kim, Y. Gho, H. Hwang and S. Lawler, Regulation of Th1/Th2 cells in asthma development: A mathematical model, Math. Bios. Eng, 10 (2013), 1095-1133. doi: 10.3934/mbe.2013.10.1095.

[35]

Y. Kim and H. Othmer, A hybrid model of tumor-stromal interactions in breast cancer, Bull Math Biol, 75 (2013), 1304-1350. doi: 10.1007/s11538-012-9787-0.

[36]

Y. Kim and S. Roh, A hybrid model for cell proliferation and migration in glioblastoma, Discrete and Continuous Dynamical Systems-B, 18 (2013), 969-1015. doi: 10.3934/dcdsb.2013.18.969.

[37]

Y. Kim, M. Stolarska and H. G. Othmer, A hybrid model for tumor spheroid growth in vitro I: Theoretical development and early results, Math. Models Methods Appl. Sci., 17 (2007), 1773-1798. doi: 10.1142/S0218202507002479.

[38]

Y. Kim, M. Stolarska and H. Othmer, The role of the microenvironment in tumor growth and invasion, Prog Biophys Mol Biol, 106 (2011), 353-379. doi: 10.1016/j.pbiomolbio.2011.06.006.

[39]

Y.-K. Kim, S.-Y. Oh, S. G. Jeon, H.-W. Park, S.-Y. Lee, E.-Y. Chun, B. Bang, H.-S. Lee, M.-H. Oh, Y.-S. Kim, J.-H. Kim, Y. S. Gho, S.-H. Cho, K.-U. Min, Y.-Y. Kim and Z. Zhu, Airway exposure levels of lipopolysaccharide determine type 1 versus type 2 experimental asthma, J. Immunol., 178 (2007), 5375-5382. doi: 10.4049/jimmunol.178.8.5375.

[40]

Y.-S. Kim, S.-W. Hong, J.-P. Choi, T.-S. Shin, H.-G. Moon, E.-J. Choi, S. G. Jeon, S.-Y. Oh, Y. S. Gho, Z. Zhu and Y.-K. Kim, Vascular endothelial growth factor is a key mediator in the development of T cell priming and its polarization to type 1 and type 17 T helper cells in the airways, J. Immunol., 183 (2009), 5113-5120. doi: 10.4049/jimmunol.0901566.

[41]

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra and T. Hall, Elastic moduli of breast and prostate tissues under compression, Ultrason. Imaging, 20 (1998), 260-274. doi: 10.1177/016173469802000403.

[42]

Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics, Academic Press, 1993.

[43]

C. L. Langrish, Y. Chen, W. M. Blumenschein, J. Mattson, B. Basham, J. D. Sedgwick, T. McClanahan, R. A. Kastelein and D. J. Cua, IL-23 drives a pathogenic T cell population that induces autoimmune inflammation, J. Exp. Med., 201 (2005), 233-240. doi: 10.1084/jem.20041257.

[44]

S. Lee, H. Hwang and Y. Kim, Modeling the role of TGF-beta in regulation of the Th17 phenotype in the LPS-driven immune system, Bull. Math. Biol., 76 (2014), 1045-1080. doi: 10.1007/s11538-014-9946-6.

[45]

Y. K. Lee, H. Turner, C. L. Maynard, J. R. Oliver, D. Chen, C. O. Elson and C. T. Weaver, Late developmental plasticity in the T helper 17 lineage, Immunity, 30 (2009), 92-107. doi: 10.1016/j.immuni.2008.11.005.

[46]

C. M. Lloyd and C. M. Hawrylowicz, Regulatory T cells in asthma, Immunity, 31 (2009), 438-449. doi: 10.1016/j.immuni.2009.08.007.

[47]

M. S. Maddur, P. Miossec, S. V. Kaveri and J. Bayry, Th17 cells: Biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies, Am. J. Pathol., 181 (2012), 8-18. doi: 10.1016/j.ajpath.2012.03.044.

[48]

A. O. Magnan, L. G. Mély, C. A. Camilla, M. M. Badier, F. A. Montero-Julian, C. M. Guillot, B. B. Casano, S. J. Prato, V. Fert, P. Bongrand and D. Vervloet, Assessment of the Th1/Th2 paradigm in whole blood in atopy and asthma: Increased IFN-$\gamma$-producing CD8(+) T cells in asthma, Am. J. Respir. Crit. Care Med., 161 (2000), 1790-1796. doi: 10.1164/ajrccm.161.6.9906130.

[49]

S. Marino, I. Hogue, C. Ray and D. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, Journal of Theoretical Biology, 254 (2008), 178-196. doi: 10.1016/j.jtbi.2008.04.011.

[50]

O. Michel, R. Ginanni, J. Duchateau, F. Vertongen, B. Bon and R. Sergysels, Domestic endotoxin exposure and clinical severity of asthma, Clin. Exp. Allergy, 21 (1991), 441-448. doi: 10.1111/j.1365-2222.1991.tb01684.x.

[51]

H.-G. Moon, Y.-M. Tae, Y.-S. Kim, S. G. Jeon, S.-Y. Oh, Y. S. Gho, Z. Zhu and Y.-K. Kim, Conversion of Th17-type into Th2-type inflammation by acetyl salicylic acid via the adenosine and uric acid pathway in the lung, Allergy, 65 (2010), 1093-1103. doi: 10.1111/j.1398-9995.2010.02352.x.

[52]

B. F. Morel, J. Kalagnanam and P. A. Morel, Mathematical modeling of Th1-Th2 dynamics, in Theoretical and Experimental Insights into Immunology (eds. A. S. Perelson and G. Weisbuch), vol. 66 of Nato ASI Subseries H:, Springer-Verlag Berlin Heidelberg, Berlin, Germany, 1992, 171-190. doi: 10.1007/978-3-642-76977-1_11.

[53]

T. R. Mosmann and S. Sad, The expanding universe of T-cell subsets: Th1, Th2 and more, Immunol. Today, 17 (1996), 138-146. doi: 10.1016/0167-5699(96)80606-2.

[54]

T. R. Mosmann, H. Cherwinski, M. W. Bond, M. A. Giedlin and R. L. Coffman, Two types of murine helper T cell clone. I. definition according to profiles of lymphokine activities and secreted proteins, J. Immunol., 136 (1986), 2348-2357.

[55]

T. R. Mosmann and R. L. Coffman, TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties, Annu. Rev. Immunol., 7 (1989), 145-173. doi: 10.1146/annurev.iy.07.040189.001045.

[56]

E. Muraille, O. Leo and M. Kaufman, The role of antigen presentation in the regulation of class-specific (Th1/Th2) immune responses, J. Biol. Syst., 3 (1995), 397-408. doi: 10.1142/S021833909500037X.

[57]

K. M. Murphy, P. Travers and M. Walport, Janeway's Immunobiology, 7th edition, Garland Science, 2007.

[58]

T. Nakagiri, M. Inoue, M. Minami, Y. Shintani and M. Okumura, Immunology mini-review: the basics of $T_H$17 and interleukin-6 in transplantation, Transplant. Proc., 44 (2012), 1035-1040.

[59]

M. F. Neurath, S. Finotto and L. H. Glimcher, The role of Th1/Th2 polarization in mucosal immunity, Nat. Med., 8 (2002), 567-573. doi: 10.1038/nm0602-567.

[60]

K. Oh, M. W. Seo, G. Y. Lee, O.-J. Byoun, H.-R. Kang, S.-H. Cho and D.-S. Lee, Airway epithelial cells initiate the allergen response through transglutaminase 2 by inducing IL-33 expression and a subsequent Th2 response, Respir. Res., 14 (2013), 35-43. doi: 10.1186/1465-9921-14-35.

[61]

M. J. Paszek and V. M. Weaver, The tension mounts: mechanics meets morphogenesis and malignancy, J. Mammary Gland Biol. Neoplasia, 9 (2004), 325-342. doi: 10.1007/s10911-004-1404-x.

[62]

A. Ray, A. Khare, N. Krishnamoorthy, Z. Qi and P. Ray, Regulatory T cells in many flavors control asthma, Mucosal Immunol., 3 (2010), 216-229. doi: 10.1038/mi.2010.4.

[63]

J. Richter, G. Metzner and U. Behn, Mathematical modelling of venom immunotherapy, J. Theor. Med., 4 (2002), 119-132. doi: 10.1080/10273660290022172.

[64]

D. S. Robinson, Regulatory T cells and asthma, Clin. Exp. Allergy, 39 (2009), 1314-1323. doi: 10.1111/j.1365-2222.2009.03301.x.

[65]

S. Romagnani, Atopic allergy and other hypersensitivities interactions between genetic susceptibility, innocuous and/or microbial antigens and the immune system, Curr. Opin. Immunol., 9 (1997), 773-775. doi: 10.1016/S0952-7915(97)80176-8.

[66]

S. Sakaguchi, Regulatory T cells: Key controllers of immunologic self-tolerance, Cell, 101 (2000), 455-458.

[67]

R. A. Seder and W. E. Paul, Acquisition of lymphokine-producing phenotype by CD4$^+$ T cells, Annu. Rev. Immunol., 12 (1994), 635-673.

[68]

R. Vogel and U. Behn, Th1-Th2 regulation and allergy: Bifurcation analysis of the non-autonomous system, in Mathematical Modeling of Biological Systems, Volume II (eds. A. Deutsch, R. Parra, R. J. de Boer, O. Diekmann, P. Jagers, E. Kisdi, M. Kretzschmar, P. Lansky and H. Metz), Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, 2008, 145-155.

[69]

Y. Y. Wan, Multi-tasking of helper T cells, Immunology, 130 (2010), 166-171. doi: 10.1111/j.1365-2567.2010.03289.x.

[70]

M. Wills-Karp, J. Luyimbazi, X. Xu, B. Schofield, T. Y. Neben, C. L. Karp and D. D. Donaldson, Interleukin-13: Central mediator of allergic asthma, Science, 282 (1998), 2258-2261. doi: 10.1126/science.282.5397.2258.

[71]

M. Wills-Karp, J. Santeliz and C. L. Karp, The germless theory of allergic disease: Revisiting the hygiene hypothesis, Nat. Rev. Immunol., 1 (2001), 69-75. doi: 10.1038/35095579.

[72]

Y. Yang, H.-L. Zhang and J. Wu, Role of T regulatory cells in the pathogenesis of asthma, Chest, 138 (2010), 1282-1283. doi: 10.1378/chest.10-1440.

[73]

A. Yates, C. Bergmann, J. L. Van Hemmen, J. Stark and R. Callard, Cytokine-modulated regulation of helper T cell populations, J. Theor. Biol., 206 (2000), 539-560. doi: 10.1006/jtbi.2000.2147.

[74]

A. Yates, R. Callard and J. Stark, Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: A model for cellular decision-making, J. Theor. Biol., 231 (2004), 181-196. doi: 10.1016/j.jtbi.2004.06.013.

[75]

M. Yazdanbakhsh, P. G. Kremsner and R. van Ree, Allergy, parasites, and the hygiene hypothesis, Science, 296 (2002), 490-494. doi: 10.1126/science.296.5567.490.

[76]

Y. Zhao, J. Yang, Y. dong Gao and W. Guo, Th17 immunity in patients with allergic asthma, Int. Arch. Allergy Immunol., 151 (2010), 297-307. doi: 10.1159/000250438.

[77]

L. Zhou, I. I. Ivanov, R. Spolski, R. Min, K. Shenderov, T. Egawa, D. E. Levy, W. J. Leonard and D. R. Littman, IL-6 programs $T_H$-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways, Nat. Immunol., 8 (2007), 967-974.

show all references

References:
[1]

S. Al-Muhsen, S. Letuve, A. Vazquez-Tello, M. A. Pureza, H. Al-Jahdali, A. S. Bahammam, Q. Hamid and R. Halwani, Th17 cytokines induce pro-fibrotic cytokines release from human eosinophils, Respir. Res., 14 (2013), p34. doi: 10.1186/1465-9921-14-34.

[2]

T. Alarcón, H. M. Byrne and P. K. Maini, Towards whole-organ modelling of tumour growth, Prog. Biophys. Mol. Biol., 85 (2004), 451-472.

[3]

J. F. Alcorn, C. R. Crowe and J. K. Kolls, $T_H$17 cells in asthma and COPD, Annu. Rev. Physiol., 72 (2010), 495-516.

[4]

O. Arino, M. L. Hbid and E. Ait Dads, Delay Differential Equations and Applications, Springer Netherlands, 2006. doi: 10.1007/1-4020-3647-7.

[5]

K. J. Baek, J. Y. Cho, P. Rosenthal, L. E. C. Alexander, V. Nizet and D. H. Broide, Hypoxia potentiates allergen induction of HIF-1$\alpha$, chemokines, airway inflammation, TGF-$\beta$1, and airway remodeling in a mouse model, Clin. Immunol., 147 (2013), 27-37.

[6]

R. L. Bar-Or and L. A. Segel, On the role of a possible dialogue between cytokine and TCR-presentation mechanisms in the regulation of autoimmune disease, J. Theor. Biol., 190 (1998), 161-178. doi: 10.1006/jtbi.1997.0545.

[7]

U. Behn, H. Dambeck and G. Metzner, Modeling Th1-Th2 regulation, allergy, and hyposensitization, in Dynamical Modeling in Biotechnology, World Scientific, 2001, chapter 11, 227-243. doi: 10.1142/9789812813053_0011.

[8]

B. S. Bochner, B. J. Undem and L. M. Lichtenstein, Immunological aspects of allergic asthma, Annu. Rev. Immunol., 12 (1994), 295-335. doi: 10.1146/annurev.iy.12.040194.001455.

[9]

R. E. Callard and A. J. Yates, Immunology and mathematics: Crossing the divide, Immunology, 115 (2005), 21-33. doi: 10.1111/j.1365-2567.2005.02142.x.

[10]

J. Carneiro, J. Stewart, A. Coutinho and G. Coutinho, The ontogeny of class-regulation of CD4$^+$ T lymphocyte populations, Int. Immunol., 7 (1995), 1265-1277. doi: 10.1093/intimm/7.8.1265.

[11]

C. Clemedson and A. Nelson, General biology: The adult organism, in Mechanisms in Radiobiology: Multicellular Organisms (eds. M. Errera and A. Forssberg), Elsevier, 1960, 95-205. doi: 10.1016/B978-1-4832-2829-7.50010-1.

[12]

L. Cosmi, F. Liotta, E. Maggi, S. Romagnani and F. Annunziato, Th17 cells: New players in asthma pathogenesis, Allergy, 66 (2011), 989-998. doi: 10.1111/j.1398-9995.2011.02576.x.

[13]

E. Cutz, H. Levison and D. M. Cooper, Ultrastructure of airways in children with asthma, Histopathology, 2 (1978), 407-421. doi: 10.1111/j.1365-2559.1978.tb01735.x.

[14]

C. Dong, Diversification of T-helper-cell lineages: Finding the family root of IL-17-producing cells, Nat. Rev. Immunol., 6 (2006), 329-334. doi: 10.1038/nri1807.

[15]

C. Dong, $T_H$17 cells in development: An updated view of their molecular identity and genetic programming, Nat. Rev. Immunol., 8 (2008), 337-348.

[16]

S. C. Eisenbarth, D. A. Piggott, J. W. Huleatt, I. Visintin, C. A. Herrick and K. Bottomly, Lipopolysaccharide-enhanced, toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen, J. Exp. Med., 196 (2002), 1645-1651. doi: 10.1084/jem.20021340.

[17]

R. L. Elliott and G. C. Blobe, Role of transforming growth factor beta in human cancer, J. Clin. Oncol., 23 (2005), 2078-2093.

[18]

M. A. Fishman and A. S. Perelson, Th1/Th2 differentiation and cross-regulation, Bull. Math. Biol., 61 (1999), 403-436. doi: 10.1006/bulm.1998.0074.

[19]

J. E. Gereda, D. Y. M. Leung, A. Thatayatikom, J. E. Streib, M. R. Price, M. D. Klinnert and A. H. Liu, Relation between house-dust endotoxin exposure, type 1 T-cell development, and allergen sensitisation in infants at high risk of asthma, Lancet, 355 (2000), 1680-1683. doi: 10.1016/S0140-6736(00)02239-X.

[20]

L. Gorelik, S. Constant and R. A. Flavell, Mechanism of transforming growth factor $\beta$-induced inhibition of T helper type 1 differentiation, J. Exp. Med., 195 (2002), 1499-1505.

[21]

L. Gorelik and R. A. Flavell, Abrogation of TGF$\beta$ signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease, Immunity, 12 (2000), 171-181.

[22]

F. Gross, G. Metznerb and U. Behn, Mathematical modelling of allergy and specific immunotherapy: Th1-Th2-Treg interactions, J. Theor. Biol., 269 (2011), 70-78. doi: 10.1016/j.jtbi.2010.10.013.

[23]

G. Grünig, M. Warnock, A. E. Wakil, R. Venkayya, F. Brombacher, D. M. Rennick, D. Sheppard, M. Mohrs, D. D. Donaldson, R. M. Locksley and D. B. Corry, Requirement for IL-13 independently of IL-4 in experimental asthma, Science, 282 (1998), 2261-2263.

[24]

J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42 of Applied Mathematical Sciences, 1st edition, Springer-Verlag New York, 1983. doi: 10.1007/978-1-4612-1140-2.

[25]

I. Gutcher and B. Becher, APC-derived cytokines and T cell polarization in autoimmune inflammation, J. Clin. Invest., 117 (2007), 1119-1127. doi: 10.1172/JCI31720.

[26]

J. K. Hale, Theory of Functional Differential Equations, vol. 3 of Applied Mathematical Sciences, Springer-Verlag New York, 1977.

[27]

Q. Hamid and M. Tulic, Immunobiology of asthma, Annu. Rev. Physiol., 71 (2009), 489-507. doi: 10.1146/annurev.physiol.010908.163200.

[28]

L. E. Harrington, R. D. Hatton, P. R. Mangan, H. Turner, T. L. Murphy, K. M. Murphy and C. T. Weaver, Interleukin 17-producing $CD4^+$ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages, Nat. Immunol., 6 (2005), 1123-1132. doi: 10.1038/ni1254.

[29]

L. E. Harrington, P. R. Mangan and C. T. Weaver, Expanding the effector CD4 T-cell repertoire: The Th17 lineage, Curr. Opin. Immunol., 18 (2006), 349-356. doi: 10.1016/j.coi.2006.03.017.

[30]

B. D. Hassard, N. D. Kazarinoff and Y.-H. Wan, Theory and Applications of Hopf Bifurcation, vol. 41 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 1981.

[31]

N. A. Hosken, K. Shibuya, A. W. Heath, K. M. Murphy and A. O'Garra, The effect of antigen dose on CD4$^+$ T helper cell phenotype development in a T cell receptor-$\alpha\beta$-transgenic model, J. Exp. Med., 182 (1995), 1579-1584. doi: 10.1084/jem.182.5.1579.

[32]

H. Jiang and L. Chess, An integrated view of suppressor T cell subsets in immunoregulation, J. Clin. Invest., 114 (2004), 1198-1208. doi: 10.1172/JCI23411.

[33]

Y. Kim, H. Lee, N. Dmitrieva, J. Kim, B. Kaur and A. Friedman, Choindroitinase ABC I-mediated enhancement of oncolytic virus spread and anti-tumor efficacy: A mathematical model, PLoS One, 9 (2014), e102499. doi: 10.1371/journal.pone.0102499.

[34]

Y. Kim, S. Lee, Y. Kim, Y. Kim, Y. Gho, H. Hwang and S. Lawler, Regulation of Th1/Th2 cells in asthma development: A mathematical model, Math. Bios. Eng, 10 (2013), 1095-1133. doi: 10.3934/mbe.2013.10.1095.

[35]

Y. Kim and H. Othmer, A hybrid model of tumor-stromal interactions in breast cancer, Bull Math Biol, 75 (2013), 1304-1350. doi: 10.1007/s11538-012-9787-0.

[36]

Y. Kim and S. Roh, A hybrid model for cell proliferation and migration in glioblastoma, Discrete and Continuous Dynamical Systems-B, 18 (2013), 969-1015. doi: 10.3934/dcdsb.2013.18.969.

[37]

Y. Kim, M. Stolarska and H. G. Othmer, A hybrid model for tumor spheroid growth in vitro I: Theoretical development and early results, Math. Models Methods Appl. Sci., 17 (2007), 1773-1798. doi: 10.1142/S0218202507002479.

[38]

Y. Kim, M. Stolarska and H. Othmer, The role of the microenvironment in tumor growth and invasion, Prog Biophys Mol Biol, 106 (2011), 353-379. doi: 10.1016/j.pbiomolbio.2011.06.006.

[39]

Y.-K. Kim, S.-Y. Oh, S. G. Jeon, H.-W. Park, S.-Y. Lee, E.-Y. Chun, B. Bang, H.-S. Lee, M.-H. Oh, Y.-S. Kim, J.-H. Kim, Y. S. Gho, S.-H. Cho, K.-U. Min, Y.-Y. Kim and Z. Zhu, Airway exposure levels of lipopolysaccharide determine type 1 versus type 2 experimental asthma, J. Immunol., 178 (2007), 5375-5382. doi: 10.4049/jimmunol.178.8.5375.

[40]

Y.-S. Kim, S.-W. Hong, J.-P. Choi, T.-S. Shin, H.-G. Moon, E.-J. Choi, S. G. Jeon, S.-Y. Oh, Y. S. Gho, Z. Zhu and Y.-K. Kim, Vascular endothelial growth factor is a key mediator in the development of T cell priming and its polarization to type 1 and type 17 T helper cells in the airways, J. Immunol., 183 (2009), 5113-5120. doi: 10.4049/jimmunol.0901566.

[41]

T. A. Krouskop, T. M. Wheeler, F. Kallel, B. S. Garra and T. Hall, Elastic moduli of breast and prostate tissues under compression, Ultrason. Imaging, 20 (1998), 260-274. doi: 10.1177/016173469802000403.

[42]

Y. Kuang, Delay Differential Equations: With Applications in Population Dynamics, Academic Press, 1993.

[43]

C. L. Langrish, Y. Chen, W. M. Blumenschein, J. Mattson, B. Basham, J. D. Sedgwick, T. McClanahan, R. A. Kastelein and D. J. Cua, IL-23 drives a pathogenic T cell population that induces autoimmune inflammation, J. Exp. Med., 201 (2005), 233-240. doi: 10.1084/jem.20041257.

[44]

S. Lee, H. Hwang and Y. Kim, Modeling the role of TGF-beta in regulation of the Th17 phenotype in the LPS-driven immune system, Bull. Math. Biol., 76 (2014), 1045-1080. doi: 10.1007/s11538-014-9946-6.

[45]

Y. K. Lee, H. Turner, C. L. Maynard, J. R. Oliver, D. Chen, C. O. Elson and C. T. Weaver, Late developmental plasticity in the T helper 17 lineage, Immunity, 30 (2009), 92-107. doi: 10.1016/j.immuni.2008.11.005.

[46]

C. M. Lloyd and C. M. Hawrylowicz, Regulatory T cells in asthma, Immunity, 31 (2009), 438-449. doi: 10.1016/j.immuni.2009.08.007.

[47]

M. S. Maddur, P. Miossec, S. V. Kaveri and J. Bayry, Th17 cells: Biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies, Am. J. Pathol., 181 (2012), 8-18. doi: 10.1016/j.ajpath.2012.03.044.

[48]

A. O. Magnan, L. G. Mély, C. A. Camilla, M. M. Badier, F. A. Montero-Julian, C. M. Guillot, B. B. Casano, S. J. Prato, V. Fert, P. Bongrand and D. Vervloet, Assessment of the Th1/Th2 paradigm in whole blood in atopy and asthma: Increased IFN-$\gamma$-producing CD8(+) T cells in asthma, Am. J. Respir. Crit. Care Med., 161 (2000), 1790-1796. doi: 10.1164/ajrccm.161.6.9906130.

[49]

S. Marino, I. Hogue, C. Ray and D. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, Journal of Theoretical Biology, 254 (2008), 178-196. doi: 10.1016/j.jtbi.2008.04.011.

[50]

O. Michel, R. Ginanni, J. Duchateau, F. Vertongen, B. Bon and R. Sergysels, Domestic endotoxin exposure and clinical severity of asthma, Clin. Exp. Allergy, 21 (1991), 441-448. doi: 10.1111/j.1365-2222.1991.tb01684.x.

[51]

H.-G. Moon, Y.-M. Tae, Y.-S. Kim, S. G. Jeon, S.-Y. Oh, Y. S. Gho, Z. Zhu and Y.-K. Kim, Conversion of Th17-type into Th2-type inflammation by acetyl salicylic acid via the adenosine and uric acid pathway in the lung, Allergy, 65 (2010), 1093-1103. doi: 10.1111/j.1398-9995.2010.02352.x.

[52]

B. F. Morel, J. Kalagnanam and P. A. Morel, Mathematical modeling of Th1-Th2 dynamics, in Theoretical and Experimental Insights into Immunology (eds. A. S. Perelson and G. Weisbuch), vol. 66 of Nato ASI Subseries H:, Springer-Verlag Berlin Heidelberg, Berlin, Germany, 1992, 171-190. doi: 10.1007/978-3-642-76977-1_11.

[53]

T. R. Mosmann and S. Sad, The expanding universe of T-cell subsets: Th1, Th2 and more, Immunol. Today, 17 (1996), 138-146. doi: 10.1016/0167-5699(96)80606-2.

[54]

T. R. Mosmann, H. Cherwinski, M. W. Bond, M. A. Giedlin and R. L. Coffman, Two types of murine helper T cell clone. I. definition according to profiles of lymphokine activities and secreted proteins, J. Immunol., 136 (1986), 2348-2357.

[55]

T. R. Mosmann and R. L. Coffman, TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties, Annu. Rev. Immunol., 7 (1989), 145-173. doi: 10.1146/annurev.iy.07.040189.001045.

[56]

E. Muraille, O. Leo and M. Kaufman, The role of antigen presentation in the regulation of class-specific (Th1/Th2) immune responses, J. Biol. Syst., 3 (1995), 397-408. doi: 10.1142/S021833909500037X.

[57]

K. M. Murphy, P. Travers and M. Walport, Janeway's Immunobiology, 7th edition, Garland Science, 2007.

[58]

T. Nakagiri, M. Inoue, M. Minami, Y. Shintani and M. Okumura, Immunology mini-review: the basics of $T_H$17 and interleukin-6 in transplantation, Transplant. Proc., 44 (2012), 1035-1040.

[59]

M. F. Neurath, S. Finotto and L. H. Glimcher, The role of Th1/Th2 polarization in mucosal immunity, Nat. Med., 8 (2002), 567-573. doi: 10.1038/nm0602-567.

[60]

K. Oh, M. W. Seo, G. Y. Lee, O.-J. Byoun, H.-R. Kang, S.-H. Cho and D.-S. Lee, Airway epithelial cells initiate the allergen response through transglutaminase 2 by inducing IL-33 expression and a subsequent Th2 response, Respir. Res., 14 (2013), 35-43. doi: 10.1186/1465-9921-14-35.

[61]

M. J. Paszek and V. M. Weaver, The tension mounts: mechanics meets morphogenesis and malignancy, J. Mammary Gland Biol. Neoplasia, 9 (2004), 325-342. doi: 10.1007/s10911-004-1404-x.

[62]

A. Ray, A. Khare, N. Krishnamoorthy, Z. Qi and P. Ray, Regulatory T cells in many flavors control asthma, Mucosal Immunol., 3 (2010), 216-229. doi: 10.1038/mi.2010.4.

[63]

J. Richter, G. Metzner and U. Behn, Mathematical modelling of venom immunotherapy, J. Theor. Med., 4 (2002), 119-132. doi: 10.1080/10273660290022172.

[64]

D. S. Robinson, Regulatory T cells and asthma, Clin. Exp. Allergy, 39 (2009), 1314-1323. doi: 10.1111/j.1365-2222.2009.03301.x.

[65]

S. Romagnani, Atopic allergy and other hypersensitivities interactions between genetic susceptibility, innocuous and/or microbial antigens and the immune system, Curr. Opin. Immunol., 9 (1997), 773-775. doi: 10.1016/S0952-7915(97)80176-8.

[66]

S. Sakaguchi, Regulatory T cells: Key controllers of immunologic self-tolerance, Cell, 101 (2000), 455-458.

[67]

R. A. Seder and W. E. Paul, Acquisition of lymphokine-producing phenotype by CD4$^+$ T cells, Annu. Rev. Immunol., 12 (1994), 635-673.

[68]

R. Vogel and U. Behn, Th1-Th2 regulation and allergy: Bifurcation analysis of the non-autonomous system, in Mathematical Modeling of Biological Systems, Volume II (eds. A. Deutsch, R. Parra, R. J. de Boer, O. Diekmann, P. Jagers, E. Kisdi, M. Kretzschmar, P. Lansky and H. Metz), Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, 2008, 145-155.

[69]

Y. Y. Wan, Multi-tasking of helper T cells, Immunology, 130 (2010), 166-171. doi: 10.1111/j.1365-2567.2010.03289.x.

[70]

M. Wills-Karp, J. Luyimbazi, X. Xu, B. Schofield, T. Y. Neben, C. L. Karp and D. D. Donaldson, Interleukin-13: Central mediator of allergic asthma, Science, 282 (1998), 2258-2261. doi: 10.1126/science.282.5397.2258.

[71]

M. Wills-Karp, J. Santeliz and C. L. Karp, The germless theory of allergic disease: Revisiting the hygiene hypothesis, Nat. Rev. Immunol., 1 (2001), 69-75. doi: 10.1038/35095579.

[72]

Y. Yang, H.-L. Zhang and J. Wu, Role of T regulatory cells in the pathogenesis of asthma, Chest, 138 (2010), 1282-1283. doi: 10.1378/chest.10-1440.

[73]

A. Yates, C. Bergmann, J. L. Van Hemmen, J. Stark and R. Callard, Cytokine-modulated regulation of helper T cell populations, J. Theor. Biol., 206 (2000), 539-560. doi: 10.1006/jtbi.2000.2147.

[74]

A. Yates, R. Callard and J. Stark, Combining cytokine signalling with T-bet and GATA-3 regulation in Th1 and Th2 differentiation: A model for cellular decision-making, J. Theor. Biol., 231 (2004), 181-196. doi: 10.1016/j.jtbi.2004.06.013.

[75]

M. Yazdanbakhsh, P. G. Kremsner and R. van Ree, Allergy, parasites, and the hygiene hypothesis, Science, 296 (2002), 490-494. doi: 10.1126/science.296.5567.490.

[76]

Y. Zhao, J. Yang, Y. dong Gao and W. Guo, Th17 immunity in patients with allergic asthma, Int. Arch. Allergy Immunol., 151 (2010), 297-307. doi: 10.1159/000250438.

[77]

L. Zhou, I. I. Ivanov, R. Spolski, R. Min, K. Shenderov, T. Egawa, D. E. Levy, W. J. Leonard and D. R. Littman, IL-6 programs $T_H$-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways, Nat. Immunol., 8 (2007), 967-974.

[1]

Yangjin Kim, Seongwon Lee, You-Sun Kim, Sean Lawler, Yong Song Gho, Yoon-Keun Kim, Hyung Ju Hwang. Regulation of Th1/Th2 cells in asthma development: A mathematical model. Mathematical Biosciences & Engineering, 2013, 10 (4) : 1095-1133. doi: 10.3934/mbe.2013.10.1095

[2]

Yuri Kogan, Zvia Agur, Moran Elishmereni. A mathematical model for the immunotherapeutic control of the Th1/Th2 imbalance in melanoma. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 1017-1030. doi: 10.3934/dcdsb.2013.18.1017

[3]

Amit Kumar Roy, Priti Kumar Roy, Ellina Grigorieva. Mathematical insights on psoriasis regulation: Role of Th1 and Th2 cells. Mathematical Biosciences & Engineering, 2018, 15 (3) : 717-738. doi: 10.3934/mbe.2018032

[4]

Carlo Cercignani. The Boltzmann equation in the 20th century. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 83-94. doi: 10.3934/dcds.2009.24.83

[5]

R.S. Dahiya, A. Zafer. Oscillatory theorems of n-th order functional differential equations. Conference Publications, 2001, 2001 (Special) : 435-443. doi: 10.3934/proc.2001.2001.435

[6]

Dmitry Strunin, Mayada Mohammed. Validity and dynamics in the nonlinearly excited 6th-order phase equation. Conference Publications, 2013, 2013 (special) : 719-728. doi: 10.3934/proc.2013.2013.719

[7]

Peng Mei, Zhan Zhou, Genghong Lin. Periodic and subharmonic solutions for a 2$n$th-order $\phi_c$-Laplacian difference equation containing both advances and retardations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2085-2095. doi: 10.3934/dcdss.2019134

[8]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[9]

Ravi P. Agarwal, Abdullah Özbekler. Lyapunov type inequalities for $n$th order forced differential equations with mixed nonlinearities. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2281-2300. doi: 10.3934/cpaa.2016037

[10]

Dmitriy Yu. Volkov. The Hopf -- Hopf bifurcation with 2:1 resonance: Periodic solutions and invariant tori. Conference Publications, 2015, 2015 (special) : 1098-1104. doi: 10.3934/proc.2015.1098

[11]

Josef Hofbauer, Rida Laraki, Jérôme Renault. Preface: Special Issue in Honor of the 60th Birthday of Sylvain Sorin. Journal of Dynamics and Games, 2014, 1 (3) : i-iv. doi: 10.3934/jdg.2014.1.3i

[12]

Jin Ma, Shige Peng, Jiongmin Yong, Xunyu Zhou. A biographical note and tribute to xunjing li on his 80th birthday. Mathematical Control and Related Fields, 2015, 5 (3) : i-iii. doi: 10.3934/mcrf.2015.5.3i

[13]

Vladimir V. Marchenko, Klavdii V. Maslov, Dmitry Shepelsky, V. V. Zhikov. E.Ya.Khruslov. On the occasion of his 70th birthday. Networks and Heterogeneous Media, 2008, 3 (3) : 647-650. doi: 10.3934/nhm.2008.3.647

[14]

Luis Alberto Fernández, Mariano Mateos, Cecilia Pola, Fredi Tröltzsch, Enrique Zuazua. Preface: A tribute to professor Eduardo Casas on his 60th birthday. Mathematical Control and Related Fields, 2018, 8 (1) : i-ii. doi: 10.3934/mcrf.201801i

[15]

Qinian Jin, YanYan Li. Starshaped compact hypersurfaces with prescribed $k$-th mean curvature in hyperbolic space. Discrete and Continuous Dynamical Systems, 2006, 15 (2) : 367-377. doi: 10.3934/dcds.2006.15.367

[16]

Hongwei Lou, Qi Lü, Gengsheng Wang, Xu Zhang. Preface: A tribute to professor Jiongmin Yong on his 60th birthday. Mathematical Control and Related Fields, 2018, 8 (3&4) : i-i. doi: 10.3934/mcrf.201803i

[17]

P. Charters. Finding an asymptotically bad family of $q$-th power residue codes. Advances in Mathematics of Communications, 2009, 3 (1) : 53-58. doi: 10.3934/amc.2009.3.53

[18]

Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026

[19]

María J. Garrido-Atienza, José A. Langa, Pedro Marín Rubio, José Valero. Preface to the special issue in honor of Prof. Tomás Caraballo on occasion of his 60th birthday. Communications on Pure and Applied Analysis, 2020, 19 (4) : i-vi. doi: 10.3934/cpaa.2020080

[20]

Zalman Balanov, Wiesław Krawcewicz, Jianshe Yu. Preface: Special issue of DCDS-S dedicated to the 70th birthday of Norman Dancer. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : i-ii. doi: 10.3934/dcdss.20197i

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (251)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]