Citation: |
[1] |
S. Aniţa, Analysis and Control of Age-Dependent Population Dynamics, Kluwer Academic Publishers, Dordrecht, 2000.doi: 10.1007/978-94-015-9436-3. |
[2] |
M. E. Araneda, J. M. Hernández and E. Gasca-Leyva, Optimal harvesting time of farmed aquatic populations with nonlinear size-heterogeneous growth, Nat. Resour. Model., 24 (2011), 477-513.doi: 10.1111/j.1939-7445.2011.00099.x. |
[3] |
V. Barbu, Mathematical Methods in Optimization of Differential Systems (translated and revised from the 1989 Romanian original), Kluwer Academic Publishers, Dordrecht, 1994.doi: 10.1007/978-94-011-0760-0. |
[4] |
S. Bhattacharya and M. Martcheva, Oscillation in a size-structured prey-predator model, Math. Biosci., 228 (2010), 31-44.doi: 10.1016/j.mbs.2010.08.005. |
[5] |
B. Ebenman and L. Persson (eds), Size-Structured Populations: Ecology and Evolution, Springer-Verlag, Berlin, 1988.doi: 10.1007/978-3-642-74001-5. |
[6] |
M. El-Doma, A size-structured population dynamics model of Daphnia, Appl. Math. Lett., 25 (2012), 1041-1044.doi: 10.1016/j.aml.2012.02.067. |
[7] |
M. Gyllenberg and G. F. Webb, Age-size structure in populations with quiescence, Math. Biosci., 86 (1987), 67-95.doi: 10.1016/0025-5564(87)90064-2. |
[8] |
Z.-R. He, Optimal birth control of age-dependent competitive species, J. Math. Anal. Appl., 296 (2004), 286-301.doi: 10.1016/j.jmaa.2004.04.052. |
[9] |
Z.-R. He, Optimal birth control of age-dependent competitive species. II. Free horizon problems, J. Math. Anal. Appl., 305 (2005), 11-28.doi: 10.1016/j.jmaa.2004.10.002. |
[10] |
Z.-R. He, J.-S. Cheng and C.-G. zhang, Optimal birth control of age-dependent competitive species. III. Overtaking problem, J. Math. Anal. Appl., 337 (2008), 21-35.doi: 10.1016/j.jmaa.2007.03.082. |
[11] |
Z.-R. He and Y. Liu, An optimal birth control problem for a dynamical population model with size-structure, Nonlinear Anal. Real World Appl., 13 (2012), 1369-1378.doi: 10.1016/j.nonrwa.2011.11.001. |
[12] |
Z.-R. He and R. Liu, Theory of optimal harvesting for a nonlinear size-structured population in periodic environments, Int. J. Biomath., 7 (2014), 1450046, 18 pp.doi: 10.1142/S1793524514500466. |
[13] |
Z. R. He, R. Liu and L. L. Liu, Optimal harvest rate for a population system modeling periodic environment and body size (Chinese), Acta Math. Sci. Ser. A Chin. Ed., 34 (2014), 684-690. |
[14] |
Z.-R. He, M.-S. Wang and Z.-E. Ma, Optimal birth control problem for nonlinear age-structured population dynamics, Discrete Contin. Dyn. Syst. Ser. B, 4 (2004), 589-594.doi: 10.3934/dcdsb.2004.4.589. |
[15] |
N. Hritonenko, Y. Yatsenko, R.-U. Goetz and A. Xabadia, Maximum principle for a size-structured model of forest and carbon sequestration management, Appl. Math. Lett., 21 (2008), 1090-1094.doi: 10.1016/j.aml.2007.12.006. |
[16] |
J. Jacob, Rahmini and Sudarmaji, The impact of imposed female sterility on field populations of ricefield rats (Rattus argentiventer), Agric. Ecosyst. Environ., 115 (2006), 281-284.doi: 10.1016/j.agee.2006.01.001. |
[17] |
N. Kato, Positive global solutions for a general model of size-dependent population dynamics, Abstr. Appl. Anal., 5 (2000), 191-206.doi: 10.1155/S108533750000035X. |
[18] |
N. Kato, Linear size-structured population models and optimal harvesting problems, Int. J. Ecol. Dev., 5 (2006), 6-19. |
[19] |
N. Kato, Optimal harvesting for nonlinear size-structured population dynamics, J. Math. Anal. Appl., 342 (2008), 1388-1398.doi: 10.1016/j.jmaa.2008.01.010. |
[20] |
N. Kato and H. Torikata, Local existence for a general model of size-dependent population dynamics, Abstr. Appl. Anal., 2 (1997), 207-226.doi: 10.1155/S1085337597000353. |
[21] |
Q. Li, F. Zhang, X. Feng, W. Wang and K. Wang, The permanence and extinction of the single species with contraception control and feedback controls, Abstr. Appl. Anal., 2012 (2012), Art. ID 589202, 14 pp. |
[22] |
Y. Liu and Z.-R. He, Stability results for a size-structured population model with resources-dependence and inflow, J. Math. Anal. Appl., 360 (2009), 665-675.doi: 10.1016/j.jmaa.2009.07.005. |
[23] |
Y. Liu and Z. R. He, Optimal harvesting of a size-structured predator-prey model, Acta Math. Sci. Ser. A Chin. Ed., 32 (2012), 90-102. |
[24] |
Y. Liu and Z.-R. He, Behavioral analysis of a nonlinear three-staged population model with age-size-structure, Appl. Math. Comput., 227 (2014), 437-448.doi: 10.1016/j.amc.2013.11.064. |
[25] |
Z. Luo, Z.-R. He and W.-T. Li, Optimal birth control for age-dependent $n$-dimensional food chain model, J. Math. Anal. Appl., 287 (2003), 557-576.doi: 10.1016/S0022-247X(03)00569-9. |
[26] |
P. Magal and S. Ruan (eds.), Structured-Population Models in Biology and Epidemiology, Springer, Berlin, 2008.doi: 10.1007/978-3-540-78273-5. |
[27] |
T. McMahon, Size and shape in biology: Elastic criteria impose limits on biological proportions, and consequently on metabolic rates, Science, 179 (1973), 1201-1204.doi: 10.1126/science.179.4079.1201. |
[28] |
K. R. Perry, W. M. Arjo, K. S. Bynum and L. A. Miller, GnRH single-injection immunocontraception of black-tailed deer, in Proc. $22^{nd}$ Vertebr. Pest Conf., (eds. R.M. Timm and J.M. O'Brien), Published at Univ. of Calif., Davis (2006). |
[29] |
H. R. Thieme, Mathematics in Population Biology, Princeton University Press, Princeton, New Jersey, 2003. |
[30] |
M. Xia, Q. Liu and S. Li, Functional Analysis and Modern Analysis Tutorial (in Chinese), Huazhong University of Science and Technology Press, HuBei (China), 2009. |
[31] |
Q.-J. Xie, Z.-R. He and C.-G. Zhang, Harvesting renewable resources of population with size structure and diffusion, Abst. App. Anal., 2014 (2014), Art. ID 396420, 9 pp.doi: 10.1155/2014/396420. |