• Previous Article
    Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays
  • DCDS-B Home
  • This Issue
  • Next Article
    Optimal contraception control for a nonlinear population model with size structure and a separable mortality
December  2016, 21(10): 3619-3635. doi: 10.3934/dcdsb.2016113

Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux

1. 

School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China, China

Received  January 2016 Revised  April 2016 Published  November 2016

This paper deals with blow-up phenomena for an initial boundary value problem of a nonlocal quasilinear parabolic equation with time-dependent coefficients in a bounded star-shaped region under nonlinear boundary flux. Using the auxiliary function method and modified differential inequality technique, we establish some conditions on time-dependent coefficients and nonlinearities to guarantee that the solution $u(x,t)$ exists globally or blows up at some finite time $t^{\ast}$. Moreover, upper and lower bounds of $t^{\ast}$ are obtained under suitable measure in high-dimensional spaces. Finally, some application examples are presented.
Citation: Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113
References:
[1]

I. Ahmed, C. L. Mu, P. Zheng and F. C. Zhang, Blow-up and global existence for the non-local reaction diffusion problem with time dependent coefficient, Bound. Value. Probl., 2013 (2013), 6 pages. doi: 10.1186/1687-2770-2013-239.

[2]

W. Allegretto, G. Fragnelli, P. Nistri and D. Papin, Coexistence and optimal control problems for a degenerate predator-prey model, J. Math. Anal. Appl., 378 (2011), 528-540. doi: 10.1016/j.jmaa.2010.12.036.

[3]

K. Baghaei and M. Hesaaraki, Lower bounds for the blow-up time in the higher-dimensional nonlinear divergence form parabolic equations, C. R. Acad. Sci. Paris. Ser. I., 351 (2013), 731-735. doi: 10.1016/j.crma.2013.09.024.

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011.

[5]

Z. B. Fang and Y. Chai, Blow-up analysis for a quasilinear parabolic equation with inner absorption and nonlinear Neumann boundary condition, Abstr. Appl. Anal., 2014 (2014), Art. ID 289245, 8 pp. doi: 10.1155/2014/289245.

[6]

Z. B. Fang, R. Yang and Y. Chai, Lower bounds estimate for the blow-up time of a slow diffusion equation with nonlocal source and inner absorption, Math. Probl. Eng., 2014 (2014), Art. ID 764248, 6 pp. doi: 10.1155/2014/764248.

[7]

Z. B. Fang and Y. X. Wang, Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux, Z. Angew. Math. Phys., 66 (2015), 2525-2541. doi: 10.1007/s00033-015-0537-7.

[8]

J. Filo, Diffusivity versus absorption through the boundary, J. Differ. Eq., 99 (1992), 281-305. doi: 10.1016/0022-0396(92)90024-H.

[9]

J. Furter and M. Grinfield, Local vs. nonlocal interactions in populations dynamics, J. Math. Biol., 27 (1989), 65-80. doi: 10.1007/BF00276081.

[10]

V. A. Galaktionov and J. L. Vázquez, The problem of blow up in nonlinear parabolic equations, Discrete Cont. Dyn. Syst., 8 (2002), 399-433. doi: 10.3934/dcds.2002.8.399.

[11]

H. A. Levine, Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: The method of unbounded Fourier coefficients, Math. Ann., 214 (1975), 205-220. doi: 10.1007/BF01352106.

[12]

Y. Liu, Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions, Math. Comput. Model., 57 (2013), 926-931. doi: 10.1016/j.mcm.2012.10.002.

[13]

M. Marras and S. Vernier Piro, On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients, Discrete Cont. Dyn. Syst., 2013 (2013), 535-544. doi: 10.3934/proc.2013.2013.535.

[14]

L. E. Payne, G. A. Philippin and S. Vernier Piro, Blow-up phenomena for semilinear heat equation with nonlinear boundary condition I, Z.Angew Math. Phys., 61 (2010), 999-1007. doi: 10.1007/s00033-010-0071-6.

[15]

L. E. Payne, G. A. Philippin and S. Vernier Piro, Blow-up phenonmena for a semilinear heat equation with nonlinear boundary condition II, Nonlinear Anal., 73 (2010), 971-978. doi: 10.1016/j.na.2010.04.023.

[16]

L. E. Payne and G. A. Philippin, Blow-up phenonmena in parabolic problems with time dependent coefficients under Neumann boundary conditions, Proc. R. Soc. Edinb. A., 142 (2012), 625-631. doi: 10.1017/S0308210511000485.

[17]

L. E. Payne and G. A. Philippin, Blow up in a class of non-linear parabolic problems with time dependent coefficients under Robin type boundary conditions, Appl. Anal., 91 (2012), 2245-2256. doi: 10.1080/00036811.2011.598865.

[18]

L. E. Payne and G. A. Philippin, Blow-up phenomena in parabolic problems with time dependent coefficients under Dirichlet Boundary conditions, Proc. Am. Math. Soc., 141 (2013), 2309-2318. doi: 10.1090/S0002-9939-2013-11493-0.

[19]

R. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Basel, 2007.

[20]

A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-Up in Quasilinear Parabolic Equations, Walter de Gruyter, Berlin, 1995. doi: 10.1515/9783110889864.535.

[21]

B. Straughan, Explosive Instabilities in Mechanics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-58807-5.

[22]

G. S. Tang, Y. F. Li and X. T. Yang, Lower bounds for the blow-up time of the nonlinear non-local reaction diffusion problems in $R^N(N\geq3)$, Bound. Value. Probl., 2014 (2014), 5 pages. doi: 10.1186/s13661-014-0265-5.

show all references

References:
[1]

I. Ahmed, C. L. Mu, P. Zheng and F. C. Zhang, Blow-up and global existence for the non-local reaction diffusion problem with time dependent coefficient, Bound. Value. Probl., 2013 (2013), 6 pages. doi: 10.1186/1687-2770-2013-239.

[2]

W. Allegretto, G. Fragnelli, P. Nistri and D. Papin, Coexistence and optimal control problems for a degenerate predator-prey model, J. Math. Anal. Appl., 378 (2011), 528-540. doi: 10.1016/j.jmaa.2010.12.036.

[3]

K. Baghaei and M. Hesaaraki, Lower bounds for the blow-up time in the higher-dimensional nonlinear divergence form parabolic equations, C. R. Acad. Sci. Paris. Ser. I., 351 (2013), 731-735. doi: 10.1016/j.crma.2013.09.024.

[4]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011.

[5]

Z. B. Fang and Y. Chai, Blow-up analysis for a quasilinear parabolic equation with inner absorption and nonlinear Neumann boundary condition, Abstr. Appl. Anal., 2014 (2014), Art. ID 289245, 8 pp. doi: 10.1155/2014/289245.

[6]

Z. B. Fang, R. Yang and Y. Chai, Lower bounds estimate for the blow-up time of a slow diffusion equation with nonlocal source and inner absorption, Math. Probl. Eng., 2014 (2014), Art. ID 764248, 6 pp. doi: 10.1155/2014/764248.

[7]

Z. B. Fang and Y. X. Wang, Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux, Z. Angew. Math. Phys., 66 (2015), 2525-2541. doi: 10.1007/s00033-015-0537-7.

[8]

J. Filo, Diffusivity versus absorption through the boundary, J. Differ. Eq., 99 (1992), 281-305. doi: 10.1016/0022-0396(92)90024-H.

[9]

J. Furter and M. Grinfield, Local vs. nonlocal interactions in populations dynamics, J. Math. Biol., 27 (1989), 65-80. doi: 10.1007/BF00276081.

[10]

V. A. Galaktionov and J. L. Vázquez, The problem of blow up in nonlinear parabolic equations, Discrete Cont. Dyn. Syst., 8 (2002), 399-433. doi: 10.3934/dcds.2002.8.399.

[11]

H. A. Levine, Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: The method of unbounded Fourier coefficients, Math. Ann., 214 (1975), 205-220. doi: 10.1007/BF01352106.

[12]

Y. Liu, Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions, Math. Comput. Model., 57 (2013), 926-931. doi: 10.1016/j.mcm.2012.10.002.

[13]

M. Marras and S. Vernier Piro, On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients, Discrete Cont. Dyn. Syst., 2013 (2013), 535-544. doi: 10.3934/proc.2013.2013.535.

[14]

L. E. Payne, G. A. Philippin and S. Vernier Piro, Blow-up phenomena for semilinear heat equation with nonlinear boundary condition I, Z.Angew Math. Phys., 61 (2010), 999-1007. doi: 10.1007/s00033-010-0071-6.

[15]

L. E. Payne, G. A. Philippin and S. Vernier Piro, Blow-up phenonmena for a semilinear heat equation with nonlinear boundary condition II, Nonlinear Anal., 73 (2010), 971-978. doi: 10.1016/j.na.2010.04.023.

[16]

L. E. Payne and G. A. Philippin, Blow-up phenonmena in parabolic problems with time dependent coefficients under Neumann boundary conditions, Proc. R. Soc. Edinb. A., 142 (2012), 625-631. doi: 10.1017/S0308210511000485.

[17]

L. E. Payne and G. A. Philippin, Blow up in a class of non-linear parabolic problems with time dependent coefficients under Robin type boundary conditions, Appl. Anal., 91 (2012), 2245-2256. doi: 10.1080/00036811.2011.598865.

[18]

L. E. Payne and G. A. Philippin, Blow-up phenomena in parabolic problems with time dependent coefficients under Dirichlet Boundary conditions, Proc. Am. Math. Soc., 141 (2013), 2309-2318. doi: 10.1090/S0002-9939-2013-11493-0.

[19]

R. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Basel, 2007.

[20]

A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-Up in Quasilinear Parabolic Equations, Walter de Gruyter, Berlin, 1995. doi: 10.1515/9783110889864.535.

[21]

B. Straughan, Explosive Instabilities in Mechanics, Springer-Verlag, Berlin, 1998. doi: 10.1007/978-3-642-58807-5.

[22]

G. S. Tang, Y. F. Li and X. T. Yang, Lower bounds for the blow-up time of the nonlinear non-local reaction diffusion problems in $R^N(N\geq3)$, Bound. Value. Probl., 2014 (2014), 5 pages. doi: 10.1186/s13661-014-0265-5.

[1]

Juntang Ding, Xuhui Shen. Upper and lower bounds for the blow-up time in quasilinear reaction diffusion problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4243-4254. doi: 10.3934/dcdsb.2018135

[2]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

[3]

Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903

[4]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011

[5]

Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134

[6]

Mohamed Jleli, Bessem Samet. Blow-up for semilinear wave equations with time-dependent damping in an exterior domain. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3885-3900. doi: 10.3934/cpaa.2020143

[7]

Ahmad Z. Fino, Mohamed Ali Hamza. Blow-up of solutions to semilinear wave equations with a time-dependent strong damping. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022006

[8]

Ling-Bing He, Jie Ji, Ling-Xuan Shao. Lower bound for the Boltzmann equation whose regularity grows tempered with time. Kinetic and Related Models, 2021, 14 (4) : 705-724. doi: 10.3934/krm.2021020

[9]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[10]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013

[11]

Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022075

[12]

Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71

[13]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052

[14]

Angelo Favini, Gianluca Mola, Silvia Romanelli. Recovering time-dependent diffusion coefficients in a nonautonomous parabolic equation from energy measurements. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1439-1454. doi: 10.3934/dcdss.2022017

[15]

Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025

[16]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure and Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[17]

Haixia Li. Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity. Evolution Equations and Control Theory, 2021, 10 (4) : 723-732. doi: 10.3934/eect.2020088

[18]

Xudong Luo, Qiaozhen Ma. The existence of time-dependent attractor for wave equation with fractional damping and lower regular forcing term. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021253

[19]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[20]

Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]