-
Previous Article
Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays
- DCDS-B Home
- This Issue
-
Next Article
Optimal contraception control for a nonlinear population model with size structure and a separable mortality
Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux
1. | School of Mathematical Sciences, Ocean University of China, Qingdao 266100, China, China |
References:
[1] |
I. Ahmed, C. L. Mu, P. Zheng and F. C. Zhang, Blow-up and global existence for the non-local reaction diffusion problem with time dependent coefficient, Bound. Value. Probl., 2013 (2013), 6 pages.
doi: 10.1186/1687-2770-2013-239. |
[2] |
W. Allegretto, G. Fragnelli, P. Nistri and D. Papin, Coexistence and optimal control problems for a degenerate predator-prey model, J. Math. Anal. Appl., 378 (2011), 528-540.
doi: 10.1016/j.jmaa.2010.12.036. |
[3] |
K. Baghaei and M. Hesaaraki, Lower bounds for the blow-up time in the higher-dimensional nonlinear divergence form parabolic equations, C. R. Acad. Sci. Paris. Ser. I., 351 (2013), 731-735.
doi: 10.1016/j.crma.2013.09.024. |
[4] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011. |
[5] |
Z. B. Fang and Y. Chai, Blow-up analysis for a quasilinear parabolic equation with inner absorption and nonlinear Neumann boundary condition, Abstr. Appl. Anal., 2014 (2014), Art. ID 289245, 8 pp.
doi: 10.1155/2014/289245. |
[6] |
Z. B. Fang, R. Yang and Y. Chai, Lower bounds estimate for the blow-up time of a slow diffusion equation with nonlocal source and inner absorption, Math. Probl. Eng., 2014 (2014), Art. ID 764248, 6 pp.
doi: 10.1155/2014/764248. |
[7] |
Z. B. Fang and Y. X. Wang, Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux, Z. Angew. Math. Phys., 66 (2015), 2525-2541.
doi: 10.1007/s00033-015-0537-7. |
[8] |
J. Filo, Diffusivity versus absorption through the boundary, J. Differ. Eq., 99 (1992), 281-305.
doi: 10.1016/0022-0396(92)90024-H. |
[9] |
J. Furter and M. Grinfield, Local vs. nonlocal interactions in populations dynamics, J. Math. Biol., 27 (1989), 65-80.
doi: 10.1007/BF00276081. |
[10] |
V. A. Galaktionov and J. L. Vázquez, The problem of blow up in nonlinear parabolic equations, Discrete Cont. Dyn. Syst., 8 (2002), 399-433.
doi: 10.3934/dcds.2002.8.399. |
[11] |
H. A. Levine, Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: The method of unbounded Fourier coefficients, Math. Ann., 214 (1975), 205-220.
doi: 10.1007/BF01352106. |
[12] |
Y. Liu, Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions, Math. Comput. Model., 57 (2013), 926-931.
doi: 10.1016/j.mcm.2012.10.002. |
[13] |
M. Marras and S. Vernier Piro, On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients, Discrete Cont. Dyn. Syst., 2013 (2013), 535-544.
doi: 10.3934/proc.2013.2013.535. |
[14] |
L. E. Payne, G. A. Philippin and S. Vernier Piro, Blow-up phenomena for semilinear heat equation with nonlinear boundary condition I, Z.Angew Math. Phys., 61 (2010), 999-1007.
doi: 10.1007/s00033-010-0071-6. |
[15] |
L. E. Payne, G. A. Philippin and S. Vernier Piro, Blow-up phenonmena for a semilinear heat equation with nonlinear boundary condition II, Nonlinear Anal., 73 (2010), 971-978.
doi: 10.1016/j.na.2010.04.023. |
[16] |
L. E. Payne and G. A. Philippin, Blow-up phenonmena in parabolic problems with time dependent coefficients under Neumann boundary conditions, Proc. R. Soc. Edinb. A., 142 (2012), 625-631.
doi: 10.1017/S0308210511000485. |
[17] |
L. E. Payne and G. A. Philippin, Blow up in a class of non-linear parabolic problems with time dependent coefficients under Robin type boundary conditions, Appl. Anal., 91 (2012), 2245-2256.
doi: 10.1080/00036811.2011.598865. |
[18] |
L. E. Payne and G. A. Philippin, Blow-up phenomena in parabolic problems with time dependent coefficients under Dirichlet Boundary conditions, Proc. Am. Math. Soc., 141 (2013), 2309-2318.
doi: 10.1090/S0002-9939-2013-11493-0. |
[19] |
R. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Basel, 2007. |
[20] |
A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-Up in Quasilinear Parabolic Equations, Walter de Gruyter, Berlin, 1995.
doi: 10.1515/9783110889864.535. |
[21] |
B. Straughan, Explosive Instabilities in Mechanics, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-58807-5. |
[22] |
G. S. Tang, Y. F. Li and X. T. Yang, Lower bounds for the blow-up time of the nonlinear non-local reaction diffusion problems in $R^N(N\geq3)$, Bound. Value. Probl., 2014 (2014), 5 pages.
doi: 10.1186/s13661-014-0265-5. |
show all references
References:
[1] |
I. Ahmed, C. L. Mu, P. Zheng and F. C. Zhang, Blow-up and global existence for the non-local reaction diffusion problem with time dependent coefficient, Bound. Value. Probl., 2013 (2013), 6 pages.
doi: 10.1186/1687-2770-2013-239. |
[2] |
W. Allegretto, G. Fragnelli, P. Nistri and D. Papin, Coexistence and optimal control problems for a degenerate predator-prey model, J. Math. Anal. Appl., 378 (2011), 528-540.
doi: 10.1016/j.jmaa.2010.12.036. |
[3] |
K. Baghaei and M. Hesaaraki, Lower bounds for the blow-up time in the higher-dimensional nonlinear divergence form parabolic equations, C. R. Acad. Sci. Paris. Ser. I., 351 (2013), 731-735.
doi: 10.1016/j.crma.2013.09.024. |
[4] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag, New York, 2011. |
[5] |
Z. B. Fang and Y. Chai, Blow-up analysis for a quasilinear parabolic equation with inner absorption and nonlinear Neumann boundary condition, Abstr. Appl. Anal., 2014 (2014), Art. ID 289245, 8 pp.
doi: 10.1155/2014/289245. |
[6] |
Z. B. Fang, R. Yang and Y. Chai, Lower bounds estimate for the blow-up time of a slow diffusion equation with nonlocal source and inner absorption, Math. Probl. Eng., 2014 (2014), Art. ID 764248, 6 pp.
doi: 10.1155/2014/764248. |
[7] |
Z. B. Fang and Y. X. Wang, Blow-up analysis for a semilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux, Z. Angew. Math. Phys., 66 (2015), 2525-2541.
doi: 10.1007/s00033-015-0537-7. |
[8] |
J. Filo, Diffusivity versus absorption through the boundary, J. Differ. Eq., 99 (1992), 281-305.
doi: 10.1016/0022-0396(92)90024-H. |
[9] |
J. Furter and M. Grinfield, Local vs. nonlocal interactions in populations dynamics, J. Math. Biol., 27 (1989), 65-80.
doi: 10.1007/BF00276081. |
[10] |
V. A. Galaktionov and J. L. Vázquez, The problem of blow up in nonlinear parabolic equations, Discrete Cont. Dyn. Syst., 8 (2002), 399-433.
doi: 10.3934/dcds.2002.8.399. |
[11] |
H. A. Levine, Nonexistence of global weak solutions to some properly and improperly posed problems of mathematical physics: The method of unbounded Fourier coefficients, Math. Ann., 214 (1975), 205-220.
doi: 10.1007/BF01352106. |
[12] |
Y. Liu, Lower bounds for the blow-up time in a non-local reaction diffusion problem under nonlinear boundary conditions, Math. Comput. Model., 57 (2013), 926-931.
doi: 10.1016/j.mcm.2012.10.002. |
[13] |
M. Marras and S. Vernier Piro, On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients, Discrete Cont. Dyn. Syst., 2013 (2013), 535-544.
doi: 10.3934/proc.2013.2013.535. |
[14] |
L. E. Payne, G. A. Philippin and S. Vernier Piro, Blow-up phenomena for semilinear heat equation with nonlinear boundary condition I, Z.Angew Math. Phys., 61 (2010), 999-1007.
doi: 10.1007/s00033-010-0071-6. |
[15] |
L. E. Payne, G. A. Philippin and S. Vernier Piro, Blow-up phenonmena for a semilinear heat equation with nonlinear boundary condition II, Nonlinear Anal., 73 (2010), 971-978.
doi: 10.1016/j.na.2010.04.023. |
[16] |
L. E. Payne and G. A. Philippin, Blow-up phenonmena in parabolic problems with time dependent coefficients under Neumann boundary conditions, Proc. R. Soc. Edinb. A., 142 (2012), 625-631.
doi: 10.1017/S0308210511000485. |
[17] |
L. E. Payne and G. A. Philippin, Blow up in a class of non-linear parabolic problems with time dependent coefficients under Robin type boundary conditions, Appl. Anal., 91 (2012), 2245-2256.
doi: 10.1080/00036811.2011.598865. |
[18] |
L. E. Payne and G. A. Philippin, Blow-up phenomena in parabolic problems with time dependent coefficients under Dirichlet Boundary conditions, Proc. Am. Math. Soc., 141 (2013), 2309-2318.
doi: 10.1090/S0002-9939-2013-11493-0. |
[19] |
R. Quittner and P. Souplet, Superlinear Parabolic Problems: Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts, Basel, 2007. |
[20] |
A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov and A. P. Mikhailov, Blow-Up in Quasilinear Parabolic Equations, Walter de Gruyter, Berlin, 1995.
doi: 10.1515/9783110889864.535. |
[21] |
B. Straughan, Explosive Instabilities in Mechanics, Springer-Verlag, Berlin, 1998.
doi: 10.1007/978-3-642-58807-5. |
[22] |
G. S. Tang, Y. F. Li and X. T. Yang, Lower bounds for the blow-up time of the nonlinear non-local reaction diffusion problems in $R^N(N\geq3)$, Bound. Value. Probl., 2014 (2014), 5 pages.
doi: 10.1186/s13661-014-0265-5. |
[1] |
Juntang Ding, Xuhui Shen. Upper and lower bounds for the blow-up time in quasilinear reaction diffusion problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4243-4254. doi: 10.3934/dcdsb.2018135 |
[2] |
Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535 |
[3] |
Hristo Genev, George Venkov. Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation. Discrete and Continuous Dynamical Systems - S, 2012, 5 (5) : 903-923. doi: 10.3934/dcdss.2012.5.903 |
[4] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations and Control Theory, 2022, 11 (2) : 515-536. doi: 10.3934/eect.2021011 |
[5] |
Xiaoliang Li, Baiyu Liu. Finite time blow-up and global solutions for a nonlocal parabolic equation with Hartree type nonlinearity. Communications on Pure and Applied Analysis, 2020, 19 (6) : 3093-3112. doi: 10.3934/cpaa.2020134 |
[6] |
Mohamed Jleli, Bessem Samet. Blow-up for semilinear wave equations with time-dependent damping in an exterior domain. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3885-3900. doi: 10.3934/cpaa.2020143 |
[7] |
Ahmad Z. Fino, Mohamed Ali Hamza. Blow-up of solutions to semilinear wave equations with a time-dependent strong damping. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022006 |
[8] |
Ling-Bing He, Jie Ji, Ling-Xuan Shao. Lower bound for the Boltzmann equation whose regularity grows tempered with time. Kinetic and Related Models, 2021, 14 (4) : 705-724. doi: 10.3934/krm.2021020 |
[9] |
Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569 |
[10] |
Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013 |
[11] |
Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022075 |
[12] |
Jong-Shenq Guo. Blow-up behavior for a quasilinear parabolic equation with nonlinear boundary condition. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 71-84. doi: 10.3934/dcds.2007.18.71 |
[13] |
Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052 |
[14] |
Angelo Favini, Gianluca Mola, Silvia Romanelli. Recovering time-dependent diffusion coefficients in a nonautonomous parabolic equation from energy measurements. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1439-1454. doi: 10.3934/dcdss.2022017 |
[15] |
Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025 |
[16] |
Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure and Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243 |
[17] |
Haixia Li. Lifespan of solutions to a parabolic type Kirchhoff equation with time-dependent nonlinearity. Evolution Equations and Control Theory, 2021, 10 (4) : 723-732. doi: 10.3934/eect.2020088 |
[18] |
Xudong Luo, Qiaozhen Ma. The existence of time-dependent attractor for wave equation with fractional damping and lower regular forcing term. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021253 |
[19] |
Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449 |
[20] |
Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li. Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28 (1) : 369-381. doi: 10.3934/era.2020021 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]