\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Weak stability for integro-differential inclusions of diffusion-wave type involving infinite delays

Abstract Related Papers Cited by
  • We deal with the Cauchy problem associated with integro-differential inclusions of diffusion-wave type involving infinite delays. Based on the behavior of resolvent operator associated with the linear part, an explicit estimate for solutions will be established. As a consequence, the weak stability of zero solution is proved in case the resolvent operator is asymptotically stable.
    Mathematics Subject Classification: Primary: 35B35, 37C75; Secondary: 47H08, 47H10.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. de Andrade and C. Cuevas, $S$-asymptotically $\omega$-periodic and asymptotically $\omega$-periodic solutions to semi-linear Cauchy problems with non-dense domain, Nonlinear Anal., 72 (2010), 3190-3208.doi: 10.1016/j.na.2009.12.016.

    [2]

    N. T. Anh and T. D. Ke, Decay integral solutions for neutral fractional differential equations with infinite delays, Math. Methods Appl. Sci., 38 (2015), 1601-1622.doi: 10.1002/mma.3172.

    [3]

    E. Bazhlekova, Fractional Evolution Equations in Banach Spaces, Ph.D. Thesis, Eindhoven University of Technology, 2001.

    [4]

    T. A. Burton, Stability by Fixed Point Theory for Functional Differential Equations, Dover Publications, New York, 2006.

    [5]

    T. A. Burton and T. Furumochi, Fixed points and problems in stability theory for ordinary and functional differential equations, Dyn. Syst. Appl., 10 (2001), 89-116.

    [6]

    J. P. Carvalho dos Santos and C. Cuevas, Asymptotically almost automorphic solutions of abstract fractional integro-differential neutral equations, Appl. Math. Lett., 23 (2010), 960-965.doi: 10.1016/j.aml.2010.04.016.

    [7]

    N. M. Chuong, T. D. Ke and N. N. Quan, Stability for a class of fractional partial integro-differential equations, J. Integral Equations Appl., 26 (2014), 145-170.doi: 10.1216/JIE-2014-26-2-145.

    [8]

    C. Cuevas and J. César de Souza, Existence of $S$-asymptotically $\omega$-periodic solutions for fractional order functional integro-differential equations with infinite delay, Nonlinear Anal., 72 (2010), 1683-1689.doi: 10.1016/j.na.2009.09.007.

    [9]

    C. Cuevas and J. César de Souza, $S$-asymptotically $\omega$-periodic solutions of semilinear fractional integro-differential equations, Appl. Math. Lett., 22 (2009), 865-870.doi: 10.1016/j.aml.2008.07.013.

    [10]

    E. Cuesta, Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations, Discrete Contin. Dyn. Syst., (Supplement) (2007), 277-285.

    [11]

    J. Diestel, W. M. Ruess and W. Schachermayer, Weak compactness in $L^{1}(\mu, X)$, Proc. Amer. Math. Soc., 118 (1993), 447-453.doi: 10.2307/2160321.

    [12]

    R. D. Driver, Ordinary and Delay Differential Equations, Springer-Verlag, New York Inc., 1977.

    [13]

    I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.doi: 10.1137/1.9781611971088.

    [14]

    A. F. Filippov, Differential Equations with Discontinuous Righthand Sides, Translated from the Russian. Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers Group, Dordrecht, 1988.doi: 10.1007/978-94-015-7793-9.

    [15]

    Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation, Osaka J. Math., 27 (1990), 309-321.

    [16]

    Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation. II, Osaka J. Math., 27 (1990), 797-804.

    [17]

    C. Gori, V. Obukhovskii, M. Ragni and P. Rubbioni, Existence and continuous dependence results for semilinear functional differential inclusions with infinite delay, Nonlinear Anal., 51 (2002), 765-782.doi: 10.1016/S0362-546X(01)00861-6.

    [18]

    J. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.

    [19]

    J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993.doi: 10.1007/978-1-4612-4342-7.

    [20]

    Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, vol. 1473, Springer-Verlag, Berlin, 1991.doi: 10.1007/BFb0084432.

    [21]

    M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, in: de Gruyter Series in Nonlinear Analysis and Applications, vol. 7, Walter de Gruyter, Berlin, New York, 2001.doi: 10.1515/9783110870893.

    [22]

    F. Mainardi and P. Paradisi, Fractional diffusive waves, J. Comput. Acoustics, 9 (2001), 1417-1436.doi: 10.1142/S0218396X01000826.

    [23]

    R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.doi: 10.1016/S0370-1573(00)00070-3.

    [24]

    R. Metzler and J. Klafter, Accelerating Brownian motion: A fractional dynamics approach to fast diffusion, Europhys. Lett., 51 (2000), 492-498.doi: 10.1209/epl/i2000-00364-5.

    [25]

    J.-S. Pang and D. E. Stewart, Differential variational inequalities, Math. Program. Ser. A, 113 (2008), 345-424.doi: 10.1007/s10107-006-0052-x.

    [26]

    A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.doi: 10.1007/978-1-4612-5561-1.

    [27]

    K. Sakamoto and M. Yamamoto, Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J. Math. Anal. Appl., 382 (2011), 426-447.doi: 10.1016/j.jmaa.2011.04.058.

    [28]

    T. I. Seidman, Invariance of the reachable set under nonlinear perturbations, SIAM J. Control Optim., 25 (1987), 1173-1191.doi: 10.1137/0325064.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(187) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return