Citation: |
[1] |
M. P. Aghababa, S. Khanmohammadi and G. Alizadeh, Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique, Applied Mathematical Modelling, 35 (2011), 3080-3091.doi: 10.1016/j.apm.2010.12.020. |
[2] |
Y. Cheng, H. De, Y. He and R. Jia, Robust finite-time synchronization of coupled harmonic oscillations with external disturbance, Journal of the Franklin Institute, 352 (2015), 4366-4381.doi: 10.1016/j.jfranklin.2015.06.006. |
[3] |
D. Efimov, A. Polyakov, E. Fridman, W. Perruquetti and J.-P. Richard, Comments on finite-time stability of time-delay systems, Automatica, 50 (2014), 1944-1947.doi: 10.1016/j.automatica.2014.05.010. |
[4] |
Q. Gan, R. Hu and Y. Liang, Adaptive synchronization for stochastic competitive neural networks with mixed time-varying delays, Commun. Nonlinear Sci. Numer. Simul, 17 (2012), 3708-3718.doi: 10.1016/j.cnsns.2012.01.021. |
[5] |
H. Gu, H. Jiang and Z. Teng, Existence and global exponential stability of equlilbrium of competitive nearal networks with different time scales and multiple delays, Journal of the Franklin Institute, 347 (2010), 719-731.doi: 10.1016/j.jfranklin.2009.03.005. |
[6] |
W. He and J. Cao, Exponential synchronization of chaotic neural networks: A matrix measure approach, Nonlinear Dyn., 55 (2009), 55-65.doi: 10.1007/s11071-008-9344-4. |
[7] |
E. Moulay, M. Dambrine, N. Yeganefar and W. Perruquetti, Finite-time stability and stabilization of time-delay systems, Systems & Control Letters, 57 (2008), 561-566.doi: 10.1016/j.sysconle.2007.12.002. |
[8] |
X. Nie and J. Cao, Multistability of competive neural networks with time-varying and distributed delays, Nonlinear Analysis B: Real World Applications, 10 (2009), 928-942.doi: 10.1016/j.nonrwa.2007.11.014. |
[9] |
M. Pecora and L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821-824.doi: 10.1103/PhysRevLett.64.821. |
[10] |
Y. Shi and P. Zhu, Synchronization of stochastic competitive neural networks with different timescales and reaction-diffusion terms, Neural Comput., 26 (2014), 2005-2024.doi: 10.1162/NECO_a_00629. |
[11] |
N. Stepp, Anticipating in feedback-delayed manual tracking of a chaotic oscillation, Exp. Brain Res., (2009), 521-525. |
[12] |
Y. Tang, Terminal sliding mode control for rigid robots, Automatica, 34 (1998), 51-56.doi: 10.1016/S0005-1098(97)00174-X. |
[13] |
Y. Tang and J. Fang, Adaptive synchronization in an array of chaotic neural networks with mixed delays and jumping stochastically hybrid coupling, Commun. Nonlinear Sci. Numer. Simul, 14 (2009), 3615-3628.doi: 10.1016/j.cnsns.2009.02.006. |
[14] |
M. Timme and F. Wolf, The simplest problem in the collective dynamics of neural networks: Is synchrony stable? Nonlinearity, 21 (2008), 1579-1599.doi: 10.1088/0951-7715/21/7/011. |
[15] |
H. U. Voss, Anticipating chaotic synchronization, Phys. Rev. E, (2001), 191-210. |
[16] |
X. Yang and J. Cao, Finite-time stochastic synchronization of complex networks, Applied Mathematical Modelling, 34 (2010), 3631-3641.doi: 10.1016/j.apm.2010.03.012. |
[17] |
X. Yang, J. Cao and J. Lu, Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control, IEEE Trans. Circ. Syst. -I. Regular Paper, 59 (2012), 371-384.doi: 10.1109/TCSI.2011.2163969. |
[18] |
X. Yang, J. Cao and Z. Yang, Synchronization of coupled reaction-diffusion neural networks with time-varying delays via pinning-impulsive controller, SIAM J. Control Optim., 51 (2013), 3486-3510.doi: 10.1137/120897341. |
[19] |
X. Yang, D. W. C. Ho, J. Lu and Q. Song, Finite-time cluster synchronization of T-S fuzzy complex networks with discontinuous subsystems and random coupling delays, IEEE Transactions on Fuzzy Systems, 23 (2015), 2302-2316.doi: 10.1109/TFUZZ.2015.2417973. |
[20] |
X. Yang, C. Huang and Q. Zhu, Synchronization of switched neural networks with mixed delays via impulsive control, Chaos Solitons Fractals, 44 (2011), 817-826.doi: 10.1016/j.chaos.2011.06.006. |
[21] |
X. Yang, Z. Wu and J. Cao, Finite-time synchronization of complex networks with nonidentical discontinuous nodes, Nonlinear Dyn., 73 (2013), 2313-2327.doi: 10.1007/s11071-013-0942-4. |
[22] |
X. Yang, Z. Yang and X. Nie, Exponential synchronization of discontinuous chaotic systems via delayed impulsive control and its application to secure communication, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 1529-1543.doi: 10.1016/j.cnsns.2013.09.012. |
[23] |
P. Zachary and C. Paul, Binocular rivalry in a competitive neural network with synaptic depression, SIAM Journal on Applied Dynamical Systems, 9 (2010), 1303-1347.doi: 10.1137/100788872. |