December  2016, 21(10): 3709-3722. doi: 10.3934/dcdsb.2016117

The steady state solutions to thermohaline circulation equations

1. 

College of Mathematics and Software Science, Sichuan Normal University, Chengdu, Sichuan 610066, China, China

Received  December 2015 Revised  May 2016 Published  November 2016

In the article, we study the existence and the regularity of the steady state solutions to thermohaline circulation equations. Firstly, we obtain a sufficient condition of the existence of weak solutions to the equations by acute angle theory of weakly continuous operator. Secondly, we prove the existence of strong solutions to the equations by ADN theory and iteration procedure. Furthermore, we study the generic property of the solutions by Sard-Smale theorem and the existence of classical solutions by ADN theorem.
Citation: Chao Xing, Ping Zhou, Hong Luo. The steady state solutions to thermohaline circulation equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3709-3722. doi: 10.3934/dcdsb.2016117
References:
[1]

H. Dijkstra and M. Ghil, Low-frequency variability of the large-scale ocean circulations: a dynamical system approach, Review of Geophysics, 43 (2005), 1-38. doi: 10.1029/2002RG000122.

[2]

H. Dijkstra and M. Molemaker, Symmetry breaking and overturning oscillations in thermohaline-driven flows, J. Fluid Mech., 331 (1997), 195-232.

[3]

H. Dijkstra and J. Neclin, Imperfections of the thermohaline circulation: Multiple equilibria and flux correction, Journal of Climate, 12 (1999), 1382-1392. doi: 10.1175/1520-0442(1999)012<1382:IOTTCM>2.0.CO;2.

[4]

L. Evans, Partial Differential Equations, American Mathematical Society, Rhode Island, 1998.

[5]

C. Foias and R. Temam, Structure of the set of stationary solutions of the Navier-Stokes equations, Communications on Pure and Applied Mathematics, 30 (1977), 149-164. doi: 10.1002/cpa.3160300202.

[6]

Y. G. Gu and W. J Sun, Nontrivial equilibrium solutions for a semilinear reaction diffusion system, Applied Mathematics and Mechanics, 25 (2004), 1382-1389. doi: 10.1007/BF02438295.

[7]

S. Henry and P. Hall, Thermohaline convection with two stable regimes of flow, Tellus, 13 (1961), 224-230.

[8]

Z. J. Jiang and S. L. Sun, Functional Analysis, (Chinese)Higher Education Press, China, 2005.

[9]

H. Luo, Steady state solution to atmospheric circulation equations with humidity effect, Journal of Applied Mathematics, 2012 (2012), Art. ID 867310, 18 pp.

[10]

T. Ma and S. H. Wang, Dynamic transition theory for thermohaline circulation, Physical D, 239 (2010), 167-189. doi: 10.1016/j.physd.2009.10.014.

[11]

T. Ma and S. H. Wang, Stability and Bifurcation of Nonlinear Evolution Equations, (Chinese) Science Press, Beijing, China, 2007.

[12]

T. Ma and S. H. Wang, Bifurcation Theory and Applications, Nonl. Sci. Ser. A, World Scientific, 2005. doi: 10.1142/5798.

[13]

T. Ma, Theories and Methods in Partial Differential Equations, (Chinese) Science Press, China, 2011.

[14]

R. Sell G and Y. C. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002.

[15]

R. Temam, Navier-Stokes Equation and Nonlinear Functional Analysis, $2^{nd}$ edition, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1983.

[16]

R. Temam, Navier-Stokes equation: Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam, The Netherlands, 1979.

[17]

R. Temam, Infinite-dimensional Dynamical Systems In Mechanics And Physics, Applied Mathematics and Science, Vol. 68, New York, Springer, 1997. doi: 10.1007/978-1-4612-0645-3.

[18]

O. Thual and J. McWilliams, The Catastrophe structure of thermohaline convection in a two-dimensional fluid model and a comparison with low-order box models, Geophysical Astrophysical Fluid Dynamics, 64 (1992), 67-95. doi: 10.1080/03091929208228085.

[19]

E. Tziperman, J. Toggweiler, Y. Fzliks and K. Bryan, Instability of the thermohaline circulation with respect to mixed boundary conditions: Is it really a problem for realistic models?, Journal of Physical Oceanography, 24 (1994), 217-232. doi: 10.1175/1520-0485(1994)024<0217:IOTTCW>2.0.CO;2.

show all references

References:
[1]

H. Dijkstra and M. Ghil, Low-frequency variability of the large-scale ocean circulations: a dynamical system approach, Review of Geophysics, 43 (2005), 1-38. doi: 10.1029/2002RG000122.

[2]

H. Dijkstra and M. Molemaker, Symmetry breaking and overturning oscillations in thermohaline-driven flows, J. Fluid Mech., 331 (1997), 195-232.

[3]

H. Dijkstra and J. Neclin, Imperfections of the thermohaline circulation: Multiple equilibria and flux correction, Journal of Climate, 12 (1999), 1382-1392. doi: 10.1175/1520-0442(1999)012<1382:IOTTCM>2.0.CO;2.

[4]

L. Evans, Partial Differential Equations, American Mathematical Society, Rhode Island, 1998.

[5]

C. Foias and R. Temam, Structure of the set of stationary solutions of the Navier-Stokes equations, Communications on Pure and Applied Mathematics, 30 (1977), 149-164. doi: 10.1002/cpa.3160300202.

[6]

Y. G. Gu and W. J Sun, Nontrivial equilibrium solutions for a semilinear reaction diffusion system, Applied Mathematics and Mechanics, 25 (2004), 1382-1389. doi: 10.1007/BF02438295.

[7]

S. Henry and P. Hall, Thermohaline convection with two stable regimes of flow, Tellus, 13 (1961), 224-230.

[8]

Z. J. Jiang and S. L. Sun, Functional Analysis, (Chinese)Higher Education Press, China, 2005.

[9]

H. Luo, Steady state solution to atmospheric circulation equations with humidity effect, Journal of Applied Mathematics, 2012 (2012), Art. ID 867310, 18 pp.

[10]

T. Ma and S. H. Wang, Dynamic transition theory for thermohaline circulation, Physical D, 239 (2010), 167-189. doi: 10.1016/j.physd.2009.10.014.

[11]

T. Ma and S. H. Wang, Stability and Bifurcation of Nonlinear Evolution Equations, (Chinese) Science Press, Beijing, China, 2007.

[12]

T. Ma and S. H. Wang, Bifurcation Theory and Applications, Nonl. Sci. Ser. A, World Scientific, 2005. doi: 10.1142/5798.

[13]

T. Ma, Theories and Methods in Partial Differential Equations, (Chinese) Science Press, China, 2011.

[14]

R. Sell G and Y. C. You, Dynamics of Evolutionary Equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002.

[15]

R. Temam, Navier-Stokes Equation and Nonlinear Functional Analysis, $2^{nd}$ edition, CBMS-NSF Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1983.

[16]

R. Temam, Navier-Stokes equation: Theory and Numerical Analysis, North-Holland Publishing Co., Amsterdam, The Netherlands, 1979.

[17]

R. Temam, Infinite-dimensional Dynamical Systems In Mechanics And Physics, Applied Mathematics and Science, Vol. 68, New York, Springer, 1997. doi: 10.1007/978-1-4612-0645-3.

[18]

O. Thual and J. McWilliams, The Catastrophe structure of thermohaline convection in a two-dimensional fluid model and a comparison with low-order box models, Geophysical Astrophysical Fluid Dynamics, 64 (1992), 67-95. doi: 10.1080/03091929208228085.

[19]

E. Tziperman, J. Toggweiler, Y. Fzliks and K. Bryan, Instability of the thermohaline circulation with respect to mixed boundary conditions: Is it really a problem for realistic models?, Journal of Physical Oceanography, 24 (1994), 217-232. doi: 10.1175/1520-0485(1994)024<0217:IOTTCW>2.0.CO;2.

[1]

Hongjun Gao, Jinqiao Duan. Dynamics of the thermohaline circulation under wind forcing. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 205-219. doi: 10.3934/dcdsb.2002.2.205

[2]

La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981

[3]

Xiangjun Wang, Jianghui Wen, Jianping Li, Jinqiao Duan. Impact of $\alpha$-stable Lévy noise on the Stommel model for the thermohaline circulation. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1575-1584. doi: 10.3934/dcdsb.2012.17.1575

[4]

Geng Chen, Yannan Shen. Existence and regularity of solutions in nonlinear wave equations. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3327-3342. doi: 10.3934/dcds.2015.35.3327

[5]

Youcef Amirat, Kamel Hamdache. Steady state solutions of ferrofluid flow models. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2329-2355. doi: 10.3934/cpaa.2016039

[6]

Norihisa Ikoma. Existence of ground state solutions to the nonlinear Kirchhoff type equations with potentials. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 943-966. doi: 10.3934/dcds.2015.35.943

[7]

Dengfeng Lü. Existence and concentration behavior of ground state solutions for magnetic nonlinear Choquard equations. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1781-1795. doi: 10.3934/cpaa.2016014

[8]

Lorena Bociu, Jean-Paul Zolésio. Existence for the linearization of a steady state fluid/nonlinear elasticity interaction. Conference Publications, 2011, 2011 (Special) : 184-197. doi: 10.3934/proc.2011.2011.184

[9]

Lijuan Wang, Hongling Jiang, Ying Li. Positive steady state solutions of a plant-pollinator model with diffusion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1805-1819. doi: 10.3934/dcdsb.2015.20.1805

[10]

Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147

[11]

Daniel Ginsberg, Gideon Simpson. Analytical and numerical results on the positivity of steady state solutions of a thin film equation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1305-1321. doi: 10.3934/dcdsb.2013.18.1305

[12]

Hua Nie, Wenhao Xie, Jianhua Wu. Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1279-1297. doi: 10.3934/cpaa.2013.12.1279

[13]

Samir K. Bhowmik, Dugald B. Duncan, Michael Grinfeld, Gabriel J. Lord. Finite to infinite steady state solutions, bifurcations of an integro-differential equation. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 57-71. doi: 10.3934/dcdsb.2011.16.57

[14]

Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reaction-diffusion equation. Evolution Equations and Control Theory, 2015, 4 (1) : 39-59. doi: 10.3934/eect.2015.4.39

[15]

Jianhua Chen, Xianhua Tang, Bitao Cheng. Existence of ground state solutions for a class of quasilinear Schrödinger equations with general critical nonlinearity. Communications on Pure and Applied Analysis, 2019, 18 (1) : 493-517. doi: 10.3934/cpaa.2019025

[16]

Pablo Ochoa, Julio Alejo Ruiz. A study of comparison, existence and regularity of viscosity and weak solutions for quasilinear equations in the Heisenberg group. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1091-1115. doi: 10.3934/cpaa.2019053

[17]

Xueying Sun, Renhao Cui. Existence and asymptotic profiles of the steady state for a diffusive epidemic model with saturated incidence and spontaneous infection mechanism. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4503-4520. doi: 10.3934/dcdss.2021120

[18]

Ran Zhuo, Yan Li. Regularity and existence of positive solutions for a fractional system. Communications on Pure and Applied Analysis, 2022, 21 (1) : 83-100. doi: 10.3934/cpaa.2021168

[19]

Wenxiong Chen, Congming Li. Regularity of solutions for a system of integral equations. Communications on Pure and Applied Analysis, 2005, 4 (1) : 1-8. doi: 10.3934/cpaa.2005.4.1

[20]

Li Ma, Youquan Luo. Dynamics of positive steady-state solutions of a nonlocal dispersal logistic model with nonlocal terms. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2555-2582. doi: 10.3934/dcdsb.2020022

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (144)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]