-
Previous Article
Permanence and ergodicity of stochastic Gilpin-Ayala population model with regime switching
- DCDS-B Home
- This Issue
-
Next Article
The steady state solutions to thermohaline circulation equations
Traveling waves in an SEIR epidemic model with the variable total population
1. | School of Mathematical Sciences, South China Normal University, Guangzhou, Guangdong 510631 |
References:
[1] |
Z. Bai and S.-L. Wu, Traveling waves in a delayed SIR epidemic model with nonlinear incidence, Appl. Math. Comput., 263 (2015), 221-232.
doi: 10.1016/j.amc.2015.04.048. |
[2] |
Z. Bai and S. Zhang, Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1370-1381.
doi: 10.1016/j.cnsns.2014.07.005. |
[3] |
H. Berestycki, F. Hamel, A. Kiselev and L. Ryzhik, Quenching and propagation in KPP reaction-diffusion equations with a heat loss, Arch. Ration. Mech. Anal., 178 (2005), 57-80.
doi: 10.1007/s00205-005-0367-4. |
[4] |
F. Braner and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2001.
doi: 10.1007/978-1-4757-3516-1. |
[5] |
J. Carr and A. Chmaj, Uniquence of the traveling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[6] |
J. Fang and X.-Q. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems, J. Dyn. Diff. Equat., 21 (2009), 663-680.
doi: 10.1007/s10884-009-9152-7. |
[7] |
S.-C. Fu, Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435 (2016), 20-37.
doi: 10.1016/j.jmaa.2015.09.069. |
[8] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[9] |
Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models. Methods Appl. Sci., 5 (1995), 935-966.
doi: 10.1142/S0218202595000504. |
[10] |
C.-H. Hsu and T.-S. Yang, Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models, Nonlinearity, 26 (2013), 121-139.
doi: 10.1088/0951-7715/26/1/121. |
[11] |
W. O. Kermack and A. G. McKendrick, Contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond., B. 115 (1927), 700-721. |
[12] |
W.-T. Li, G. Lin, C. Ma and F.-Y. Yang, Travelling wave solutions of a nonlocal delayed SIR model with outbreak threshold, Discrete Contin. Dyn. Sys., Ser.B. 19 (2014), 467-484.
doi: 10.3934/dcdsb.2014.19.467. |
[13] |
J. D. Murray, Mathematical Biology, I and II, third edition. Springer, New York, 2002. |
[14] |
L. Perko, Differential Equations and Dynamical Systems, third edition, Springer, New York, 2001.
doi: 10.1007/978-1-4613-0003-8. |
[15] |
H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[16] |
H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion stsyems, J. Nonlinear Sciences, 21 (2011), 747-783.
doi: 10.1007/s00332-011-9099-9. |
[17] |
H. Wang and X.-S. Wang, Travelling waves phenomena in a Kermack-McKendrick SIR model, J. Dyn. Diff. Equat., 28 (2016), 143-166.
doi: 10.1007/s10884-015-9506-2. |
[18] |
W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.
doi: 10.1137/090775890. |
[19] |
X.-S. Wang, H. Wang and J. Wu, Travelling waves of diffusive predator-prey systems: Disease outbreak propagation, Discrete Contin. Dyn. Sys., 32 (2012), 3303-3324.
doi: 10.3934/dcds.2012.32.3303. |
[20] |
Z.-C. Wang and J. Wu, Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission, Proc. R. Soc., A, 466 (2010), 237-261.
doi: 10.1098/rspa.2009.0377. |
[21] |
P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemics model, J. Differential Equations, 229 (2006), 270-296.
doi: 10.1016/j.jde.2006.01.020. |
[22] |
S.-L. Wu and C.-H. Hsu, Existence of entire solutions for delayed monostable epidemic models, Trans. Amer. Math. Soc., 368 (2016), 6033-6062.
doi: 10.1090/tran/6526. |
[23] |
S.-L. Wu, C.-H. Hsu and Y. Xiao, Global attractivity, spreading speeds and traveling wave of delayed nonlocal reaction-diffusion systems, J. Differential Equations, 258 (2015), 1058-1105.
doi: 10.1016/j.jde.2014.10.009. |
[24] |
Z. Xu, Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent period, Nonlinear Analysis, 111 (2014), 66-81.
doi: 10.1016/j.na.2014.08.012. |
[25] |
Z. Xu, Traveling waves for a diffusive SEIR epidemic model, Commun. Pure Appl. Anal. 15 (2016), 871-892.
doi: 10.3934/cpaa.2016.15.871. |
[26] |
Z. Xu, C. Ai, Traveling waves in a diffusive influenza epidemic model with vaccination, Appl. Math. Modelling. 40 (2016), 7265-7280.
doi: 10.1016/j.apm.2016.03.021. |
[27] |
F.-Y. Yang, Y. Li, W.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal Kermack-Mckendrick epidmic model, Discrete Contin. Dyn. Sys., Ser.B. 18 (2013), 1969-1993.
doi: 10.3934/dcdsb.2013.18.1969. |
[28] |
F.-Y. Yang, Y. Li, W.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal SIR epidmic model, Nonlinear Analysis: Real World Applications, 23 (2015), 129-147.
doi: 10.1016/j.nonrwa.2014.12.001. |
[29] |
T. Zhang and W. Wang, Existence of thaveling wave solutions for influenza model with treatment, J. Math. Anal. Appl., 419 (2014), 469-495.
doi: 10.1016/j.jmaa.2014.04.068. |
show all references
References:
[1] |
Z. Bai and S.-L. Wu, Traveling waves in a delayed SIR epidemic model with nonlinear incidence, Appl. Math. Comput., 263 (2015), 221-232.
doi: 10.1016/j.amc.2015.04.048. |
[2] |
Z. Bai and S. Zhang, Traveling waves of a diffusive SIR epidemic model with a class of nonlinear incidence rates and distributed delay, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1370-1381.
doi: 10.1016/j.cnsns.2014.07.005. |
[3] |
H. Berestycki, F. Hamel, A. Kiselev and L. Ryzhik, Quenching and propagation in KPP reaction-diffusion equations with a heat loss, Arch. Ration. Mech. Anal., 178 (2005), 57-80.
doi: 10.1007/s00205-005-0367-4. |
[4] |
F. Braner and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2001.
doi: 10.1007/978-1-4757-3516-1. |
[5] |
J. Carr and A. Chmaj, Uniquence of the traveling waves for nonlocal monostable equations, Proc. Amer. Math. Soc., 132 (2004), 2433-2439.
doi: 10.1090/S0002-9939-04-07432-5. |
[6] |
J. Fang and X.-Q. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems, J. Dyn. Diff. Equat., 21 (2009), 663-680.
doi: 10.1007/s10884-009-9152-7. |
[7] |
S.-C. Fu, Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435 (2016), 20-37.
doi: 10.1016/j.jmaa.2015.09.069. |
[8] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[9] |
Y. Hosono and B. Ilyas, Traveling waves for a simple diffusive epidemic model, Math. Models. Methods Appl. Sci., 5 (1995), 935-966.
doi: 10.1142/S0218202595000504. |
[10] |
C.-H. Hsu and T.-S. Yang, Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models, Nonlinearity, 26 (2013), 121-139.
doi: 10.1088/0951-7715/26/1/121. |
[11] |
W. O. Kermack and A. G. McKendrick, Contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond., B. 115 (1927), 700-721. |
[12] |
W.-T. Li, G. Lin, C. Ma and F.-Y. Yang, Travelling wave solutions of a nonlocal delayed SIR model with outbreak threshold, Discrete Contin. Dyn. Sys., Ser.B. 19 (2014), 467-484.
doi: 10.3934/dcdsb.2014.19.467. |
[13] |
J. D. Murray, Mathematical Biology, I and II, third edition. Springer, New York, 2002. |
[14] |
L. Perko, Differential Equations and Dynamical Systems, third edition, Springer, New York, 2001.
doi: 10.1007/978-1-4613-0003-8. |
[15] |
H. R. Thieme and X.-Q. Zhao, Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models, J. Differential Equations, 195 (2003), 430-470.
doi: 10.1016/S0022-0396(03)00175-X. |
[16] |
H. Wang, Spreading speeds and traveling waves for non-cooperative reaction-diffusion stsyems, J. Nonlinear Sciences, 21 (2011), 747-783.
doi: 10.1007/s00332-011-9099-9. |
[17] |
H. Wang and X.-S. Wang, Travelling waves phenomena in a Kermack-McKendrick SIR model, J. Dyn. Diff. Equat., 28 (2016), 143-166.
doi: 10.1007/s10884-015-9506-2. |
[18] |
W. Wang and X.-Q. Zhao, A nonlocal and time-delayed reaction-diffusion model of dengue transmission, SIAM J. Appl. Math., 71 (2011), 147-168.
doi: 10.1137/090775890. |
[19] |
X.-S. Wang, H. Wang and J. Wu, Travelling waves of diffusive predator-prey systems: Disease outbreak propagation, Discrete Contin. Dyn. Sys., 32 (2012), 3303-3324.
doi: 10.3934/dcds.2012.32.3303. |
[20] |
Z.-C. Wang and J. Wu, Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission, Proc. R. Soc., A, 466 (2010), 237-261.
doi: 10.1098/rspa.2009.0377. |
[21] |
P. Weng and X.-Q. Zhao, Spreading speed and traveling waves for a multi-type SIS epidemics model, J. Differential Equations, 229 (2006), 270-296.
doi: 10.1016/j.jde.2006.01.020. |
[22] |
S.-L. Wu and C.-H. Hsu, Existence of entire solutions for delayed monostable epidemic models, Trans. Amer. Math. Soc., 368 (2016), 6033-6062.
doi: 10.1090/tran/6526. |
[23] |
S.-L. Wu, C.-H. Hsu and Y. Xiao, Global attractivity, spreading speeds and traveling wave of delayed nonlocal reaction-diffusion systems, J. Differential Equations, 258 (2015), 1058-1105.
doi: 10.1016/j.jde.2014.10.009. |
[24] |
Z. Xu, Traveling waves in a Kermack-Mckendrick epidemic model with diffusion and latent period, Nonlinear Analysis, 111 (2014), 66-81.
doi: 10.1016/j.na.2014.08.012. |
[25] |
Z. Xu, Traveling waves for a diffusive SEIR epidemic model, Commun. Pure Appl. Anal. 15 (2016), 871-892.
doi: 10.3934/cpaa.2016.15.871. |
[26] |
Z. Xu, C. Ai, Traveling waves in a diffusive influenza epidemic model with vaccination, Appl. Math. Modelling. 40 (2016), 7265-7280.
doi: 10.1016/j.apm.2016.03.021. |
[27] |
F.-Y. Yang, Y. Li, W.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal Kermack-Mckendrick epidmic model, Discrete Contin. Dyn. Sys., Ser.B. 18 (2013), 1969-1993.
doi: 10.3934/dcdsb.2013.18.1969. |
[28] |
F.-Y. Yang, Y. Li, W.-T. Li and Z.-C. Wang, Traveling waves in a nonlocal dispersal SIR epidmic model, Nonlinear Analysis: Real World Applications, 23 (2015), 129-147.
doi: 10.1016/j.nonrwa.2014.12.001. |
[29] |
T. Zhang and W. Wang, Existence of thaveling wave solutions for influenza model with treatment, J. Math. Anal. Appl., 419 (2014), 469-495.
doi: 10.1016/j.jmaa.2014.04.068. |
[1] |
Zhiting Xu. Traveling waves for a diffusive SEIR epidemic model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 871-892. doi: 10.3934/cpaa.2016.15.871 |
[2] |
Wei Ding, Wenzhang Huang, Siroj Kansakar. Traveling wave solutions for a diffusive sis epidemic model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1291-1304. doi: 10.3934/dcdsb.2013.18.1291 |
[3] |
Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, 2021, 29 (3) : 2325-2358. doi: 10.3934/era.2020118 |
[4] |
Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3005-3017. doi: 10.3934/dcdsb.2021170 |
[5] |
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37 |
[6] |
Zhihong Xia, Peizheng Yu. A fixed point theorem for twist maps. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022045 |
[7] |
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 |
[8] |
Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170 |
[9] |
Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692 |
[10] |
Yoichi Enatsu, Emiko Ishiwata, Takeo Ushijima. Traveling wave solution for a diffusive simple epidemic model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 835-850. doi: 10.3934/dcdss.2020387 |
[11] |
Ran Zhang, Shengqiang Liu. On the asymptotic behaviour of traveling wave solution for a discrete diffusive epidemic model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1197-1204. doi: 10.3934/dcdsb.2020159 |
[12] |
Zhisheng Shuai, P. van den Driessche. Impact of heterogeneity on the dynamics of an SEIR epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (2) : 393-411. doi: 10.3934/mbe.2012.9.393 |
[13] |
Zhigui Lin, Yinan Zhao, Peng Zhou. The infected frontier in an SEIR epidemic model with infinite delay. Discrete and Continuous Dynamical Systems - B, 2013, 18 (9) : 2355-2376. doi: 10.3934/dcdsb.2013.18.2355 |
[14] |
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455 |
[15] |
Wan-Tong Li, Wen-Bing Xu, Li Zhang. Traveling waves and entire solutions for an epidemic model with asymmetric dispersal. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2483-2512. doi: 10.3934/dcds.2017107 |
[16] |
Qun Liu, Daqing Jiang, Ningzhong Shi, Tasawar Hayat, Ahmed Alsaedi. Stationarity and periodicity of positive solutions to stochastic SEIR epidemic models with distributed delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2479-2500. doi: 10.3934/dcdsb.2017127 |
[17] |
Edoardo Beretta, Dimitri Breda. An SEIR epidemic model with constant latency time and infectious period. Mathematical Biosciences & Engineering, 2011, 8 (4) : 931-952. doi: 10.3934/mbe.2011.8.931 |
[18] |
Julia Amador, Mariajesus Lopez-Herrero. Cumulative and maximum epidemic sizes for a nonlinear SEIR stochastic model with limited resources. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3137-3151. doi: 10.3934/dcdsb.2017211 |
[19] |
Zhaosheng Feng, Goong Chen. Traveling wave solutions in parametric forms for a diffusion model with a nonlinear rate of growth. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 763-780. doi: 10.3934/dcds.2009.24.763 |
[20] |
Junhao Wen, Peixuan Weng. Traveling wave solutions in a diffusive producer-scrounger model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (2) : 627-645. doi: 10.3934/dcdsb.2017030 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]