We study the problem of inventory control, with simultaneous pricing optimization in continuous time. For the classical inventory control problem in continuous time, see [
Citation: |
G. Allon
and A. Zeevi
, A Note on the Relationship Among Capacity, Pricing and Inventory in a Make-to-Stock System, Production and Operations Management, 20 (2011)
, 143-151.
doi: 10.1111/j.1937-5956.2010.01193.x.![]() ![]() |
|
K. J. Arrow
, T. Harris
and J. Marshak
, Optimal inventory policy, Econometrica, 19 (1951)
, 250-272.
doi: 10.2307/1906813.![]() ![]() ![]() |
|
J. A. Bather
, A continuous time inventory model, Journal of Applied Probability, 3 (1966)
, 538-549.
doi: 10.1017/S0021900200114317.![]() ![]() ![]() |
|
R. Bellman, Dynamic Programming, Dover Books on Computer Science, 2003.
![]() ![]() |
|
A. Bensoussan, Dynamic Programming and Inventory Control, IOS Press, Studies in Probability, Optimization and Statistics, 2011.
![]() ![]() |
|
C. M. Bender and S. A. Orszag, Advanced Mathematical Methods for Scientists and Engineers Ⅰ, Springer Science & Business Media, 1999.
doi: 10.1007/978-1-4757-3069-2.![]() ![]() ![]() |
|
A. Bensoussan and J. L. Lions, Impulse Control and Quasi-Variational Inequalities, Dunod, 1982.
![]() |
|
A. Bensoussan
, R. H. Liu
and S. Sethi
, Optimality of and $(s,S)$ policy with compound poisson and diffusion demands: A QVI approach, SIAM J. Control Optim., 44 (2005)
, 1650-1676.
doi: 10.1137/S0363012904443737.![]() ![]() ![]() |
|
A. Bensoussan and Y. Houmin, Inventory Control with Pricing Optimization, 2013.
![]() |
|
S. Browne
and P. Zipkin
, Inventory models with continuous, stochastic demands, The Annals of Applied Probability, 1 (1991)
, 419-435.
doi: 10.1214/aoap/1177005875.![]() ![]() ![]() |
|
X. Chen
and D. Simchi-Levi
, Pricing and inventory management, The Oxford Handbook of Pricing Management eds. R. Phillips and O. Ozalp, Oxford University Press, (2012)
, 784-822.
doi: 10.1093/oxfordhb/9780199543175.013.0030.![]() ![]() |
|
X. Chen
and J. Zhang
, Production control and supplier selection under demand, Journal of Industrial Engineering and Management, 3 (2010)
, 421-446.
doi: 10.3926/jiem.2010.v3n3.p421-446.![]() ![]() |
|
T. Dohi
, N. Kaio
and S. Osaki
, A continuous time inventory control for wiener process demand, Computers Math. Applic., 26 (1993)
, 11-22.
doi: 10.1016/0898-1221(93)90002-D.![]() ![]() ![]() |
|
A. Federgruen
and A. Heching
, Combined pricing and inventory control under uncertainty, Operations Research, 47 (1999)
, 454-475.
doi: 10.1287/opre.47.3.454.![]() ![]() ![]() |
|
Q. Feng
, G. Gallego
, S. Sethi
, H. Yan
and H. Zhang
, Are base-stock policies optimal in inventory problems with multiple delivery modes?, Operations Research, 54 (2006)
, 801-807.
doi: 10.1287/opre.1050.0271.![]() ![]() |
|
Q. Feng
, S. Luo
and D. Zhang
, Dynamic inventory-pricing control under backorder: Demand estimation and policy optimization, Manufactoring and Service Operations Management, 16 (2013)
, 149-160.
doi: 10.1287/msom.2013.0459.![]() ![]() |
|
F. S. Gökhan, Effect of the Guess Function & Continuation Method on the Run Time of MATLAB BVP Solvers, 2011.
![]() |
|
F. W. Harris
, How many parts to make of one, Factory, The Magazine of Management, 10 (1913)
, 135-136.
![]() |
|
J. Harrison
and A. Taylor
, Optimal control of a brownian storage system, Stochastic Process and Their Applications, 6 (1978)
, 179-194.
![]() ![]() |
|
L. Gimpl-Heersink
, C. Rudloff
, M. Fleischmann
and A. Taudes
, Integrating pricing and inventory control: Is it worth the efffort?, Business Reasearch Official Open Access Journal of VHB, 1 (2008)
, 106-123.
doi: 10.1007/BF03342705.![]() ![]() |
|
S. C. Graves, A Base Stock Inventory Model for Remanufacturable Product, MIT, http://hdl.handle.net/1721.1/3735.
![]() |
|
R. Güllü
, Base Stock policies for production/invenotry problems with uncertain capacity levels, European Journal of Operational Research, 105 (1998)
, 43-51.
![]() |
|
http://se.mathworks.com/help/matlab/ref/bvp5c.html?requestedDomain=www.mathworks.com#
![]() |
|
G. van Ryzin
and G. Vulcano
, Optimal auctioning and ordering in an infinite horizon inventory-pricing system, Operations Research, 52 (2004)
, 346-367.
doi: 10.1287/opre.1040.0105.![]() ![]() ![]() |
|
Y. Lu
, Y. Chen
, M. Song
and X. Yan
, Optimal pricing and inventory control policy with quantity-based price differentiation, Operations Research, 62 (2014)
, 512-523.
doi: 10.1287/opre.2013.1240.![]() ![]() ![]() |
|
E. L. Porteus, Stochastic Inventory Theory, in Handbooks in O. R. and M. S. , (eds. D. Heyman, M. J. Sobel), Elsevier, 2 (1990), 605-652.
doi: 10.1016/S0927-0507(05)80176-8.![]() ![]() ![]() |
|
M. L. Puterman
, A diffusion process model for a storage system, TIMS Studies in Management Sciences, 1 (1975)
, 143-159.
![]() ![]() |
|
Y. Qin
, R. Wang
, J. V. Asoo
, Y. Chen
and M. M. H. Seref
, The newsvendor problem: Review and directions for future research, European Journal of Operational Research, 213 (2011)
, 361-374.
doi: 10.1016/j.ejor.2010.11.024.![]() ![]() ![]() |
|
K. Sato
and K. Sawaki
, A continuous-time inventory model with procurement from spot market, Journal of the Operations Research Society of Japan, 53 (2010)
, 136-148.
![]() ![]() |
|
L. F. Shampine, I. Gladwell and S. Thompson, Solving ODEs with MATLAB, Cambridge University Press, 2013.
doi: 10.1017/CBO9780511615542.![]() ![]() |
|
T. M. Whitin
, Inventory control and price theory, Management Science, 2 (1955)
, 61-68.
doi: 10.1287/mnsc.2.1.61.![]() ![]() |
|
R. Zhang, An Introduction to Joint Pricing and Inventory Management under Stochastic Demand, 2013.
![]() |
Finding the value of
Price depending on Inventory Level