January  2017, 22(1): 209-226. doi: 10.3934/dcdsb.2017011

pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations

1. 

Department of Mathematics, Science of College, China University of Petroleum, Beijing 102249, China

2. 

School of Mathematical Sciences, Capital Normal University, Beijing 100048, China and College of Biochemical Engineering, Beijing Union University, Beijing 100101, China

* Corresponding author: Yi Zhang

Received  August 2015 Revised  May 2016 Published  December 2016

In this paper, we discuss the $p$th moment exponential stabilization of continuous-time hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. The hybrid stochastic functional differential equations are also known as stochastic functional differential equations with the Markovian switching. We follow Mao's paper to consider the auxiliary system whose control is based on continuous-time state observation. The lemma is provided that if the $p$th moment of the solution $y(t)$ of the auxiliary system decays exponentially then the same with the $p$th moment of the functional $y_t$. With the help of this lemma, the criterion for $p$th moment exponential stability of the primary system is given, and the margin of the duration of the discrete-time state observation is presented. Then the special case like the linear system is considered and the discrete-time feedback control is designed.

Citation: Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011
References:
[1]

W. F. Ames and B. G. Pachpatte, Inequalities for Differential and Integral Equations Academic Press, 197 (1997). Google Scholar

[2]

G. K. BasakA. Bisi and M. K. Ghosh, Stability of a random diffusion with linear drift, Journal of Mathematical Analysis and Applications, 202 (1996), 604-622.  doi: 10.1006/jmaa.1996.0336.  Google Scholar

[3]

F. DengQ. Luo and X. Mao, Stochastic stabilization of hybrid differential equations, Automatica, 48 (2012), 2321-2328.  doi: 10.1016/j.automatica.2012.06.044.  Google Scholar

[4]

Y. Ji and H. J. Chizeck, Controllability, stabilizability, and continuous-time markovian jump linear quadratic control, Automatic Control IEEE Transactions on, 35 (1990), 777-788.  doi: 10.1109/9.57016.  Google Scholar

[5]

X. Mao, Stability of stochastic differential equations with Markovian switching, Stochastic Processes and Their Applications, 79 (1999), 45-67.  doi: 10.1016/S0304-4149(98)00070-2.  Google Scholar

[6]

X. Mao, Stochastic functional differential equations with markovian switching, Funct. Differ. Equ, 6 (1999), 375-396.   Google Scholar

[7]

X. Mao, Asymptotic stability for stochastic differential equations with Markovian switching, Funct. Differ. Equ., 9 (2002), 201-220.   Google Scholar

[8]

X. Mao, Exponential stability of stochastic delay interval systems with markovian switching, Automatic Control IEEE Transactions on, 47 (2002), 1604-1612.  doi: 10.1109/TAC.2002.803529.  Google Scholar

[9]

X. MaoG. Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica, 43 (2007), 264-273.  doi: 10.1016/j.automatica.2006.09.006.  Google Scholar

[10]

X. MaoJ. Lam and L. Huang, Stabilisation of hybrid stochastic differential equations by delay feedback control, Systems Control Letters, 57 (2008), 927-935.  doi: 10.1016/j.sysconle.2008.05.002.  Google Scholar

[11]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching London: Imperial College Press, 2006. doi: 10.1142/p473.  Google Scholar

[12]

X. MaoA. Matasov and A. B. Piunovskiy, Stochastic differential delay equations with Markovian switching, Bernoulli, 6 (2000), 73-90.  doi: 10.2307/3318634.  Google Scholar

[13]

X. Mao, Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control, Automatica, 49 (2013), 3677-3681.  doi: 10.1016/j.automatica.2013.09.005.  Google Scholar

[14]

X. MaoW. LiuL. HuQ. Luo and J. Lu, Stabilization of hybrid stochastic differential equations by feedback control based on discrete-time state observations, Systems & Control Letters, 73 (2014), 88-95.  doi: 10.1016/j.sysconle.2014.08.011.  Google Scholar

[15]

S. Mohammed, Stochastic Functional Differential Equations, Research Notes in Mathematics, 99. Pitman (Advanced Publishing Program), Boston, MA, 1984.  Google Scholar

[16]

Z. YangX. Mao and C. Yuan, Comparison theorem of one-dimensional stochastic hybrid delay systems, Systems & Control Letters, 57 (2008), 56-63.  doi: 10.1016/j.sysconle.2007.06.014.  Google Scholar

[17]

S. YouW. LiuJ. LuX. Mao and Q. Qiu, Stabilization of hybrid systems by feedback control based on discrete-time state observations, SIAM Journal on Control and Optimization, 53 (2015), 905-925.  doi: 10.1137/140985779.  Google Scholar

[18]

C. Yuan and X. Mao, Robust stability and controllability of stochastic differential delay equations with markovian switching, Automatica, 40 (2004), 343-354.  doi: 10.1016/j.automatica.2003.10.012.  Google Scholar

[19]

H. XuK. L. Teo and X. Liu, Robust stability analysis of guaranteed cost control for impulsive switched systems, IEEE Trans. on Sys. Man. and Cyber. B, 38 (2008), 1419-1422.   Google Scholar

[20]

H. XuY. Chen and K. L. Teo, Global exponential stability of impulsive discrete-time neural networks with time-varying delays, Applied Mathematics and Computation, 217 (2010), 537-544.  doi: 10.1016/j.amc.2010.05.087.  Google Scholar

[21]

Y. ZhangY. ZhaoM. ShiH. Shi and C. Liu, The absolute stability of stochastic control system with Markovian switching, Dynam. Cont. Dis. Ser. A, 21 (2014), 531-547.   Google Scholar

[22]

Y. ZhangY. ZhaoT. Xu and X. Liu, $p$th Moment absolute exponential stability of stochastic control system with Markovian switching, Journal of Industrial and Management Optimization, 12 (2016), 471-486.  doi: 10.3934/jimo.2016.12.471.  Google Scholar

show all references

References:
[1]

W. F. Ames and B. G. Pachpatte, Inequalities for Differential and Integral Equations Academic Press, 197 (1997). Google Scholar

[2]

G. K. BasakA. Bisi and M. K. Ghosh, Stability of a random diffusion with linear drift, Journal of Mathematical Analysis and Applications, 202 (1996), 604-622.  doi: 10.1006/jmaa.1996.0336.  Google Scholar

[3]

F. DengQ. Luo and X. Mao, Stochastic stabilization of hybrid differential equations, Automatica, 48 (2012), 2321-2328.  doi: 10.1016/j.automatica.2012.06.044.  Google Scholar

[4]

Y. Ji and H. J. Chizeck, Controllability, stabilizability, and continuous-time markovian jump linear quadratic control, Automatic Control IEEE Transactions on, 35 (1990), 777-788.  doi: 10.1109/9.57016.  Google Scholar

[5]

X. Mao, Stability of stochastic differential equations with Markovian switching, Stochastic Processes and Their Applications, 79 (1999), 45-67.  doi: 10.1016/S0304-4149(98)00070-2.  Google Scholar

[6]

X. Mao, Stochastic functional differential equations with markovian switching, Funct. Differ. Equ, 6 (1999), 375-396.   Google Scholar

[7]

X. Mao, Asymptotic stability for stochastic differential equations with Markovian switching, Funct. Differ. Equ., 9 (2002), 201-220.   Google Scholar

[8]

X. Mao, Exponential stability of stochastic delay interval systems with markovian switching, Automatic Control IEEE Transactions on, 47 (2002), 1604-1612.  doi: 10.1109/TAC.2002.803529.  Google Scholar

[9]

X. MaoG. Yin and C. Yuan, Stabilization and destabilization of hybrid systems of stochastic differential equations, Automatica, 43 (2007), 264-273.  doi: 10.1016/j.automatica.2006.09.006.  Google Scholar

[10]

X. MaoJ. Lam and L. Huang, Stabilisation of hybrid stochastic differential equations by delay feedback control, Systems Control Letters, 57 (2008), 927-935.  doi: 10.1016/j.sysconle.2008.05.002.  Google Scholar

[11]

X. Mao and C. Yuan, Stochastic Differential Equations with Markovian Switching London: Imperial College Press, 2006. doi: 10.1142/p473.  Google Scholar

[12]

X. MaoA. Matasov and A. B. Piunovskiy, Stochastic differential delay equations with Markovian switching, Bernoulli, 6 (2000), 73-90.  doi: 10.2307/3318634.  Google Scholar

[13]

X. Mao, Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control, Automatica, 49 (2013), 3677-3681.  doi: 10.1016/j.automatica.2013.09.005.  Google Scholar

[14]

X. MaoW. LiuL. HuQ. Luo and J. Lu, Stabilization of hybrid stochastic differential equations by feedback control based on discrete-time state observations, Systems & Control Letters, 73 (2014), 88-95.  doi: 10.1016/j.sysconle.2014.08.011.  Google Scholar

[15]

S. Mohammed, Stochastic Functional Differential Equations, Research Notes in Mathematics, 99. Pitman (Advanced Publishing Program), Boston, MA, 1984.  Google Scholar

[16]

Z. YangX. Mao and C. Yuan, Comparison theorem of one-dimensional stochastic hybrid delay systems, Systems & Control Letters, 57 (2008), 56-63.  doi: 10.1016/j.sysconle.2007.06.014.  Google Scholar

[17]

S. YouW. LiuJ. LuX. Mao and Q. Qiu, Stabilization of hybrid systems by feedback control based on discrete-time state observations, SIAM Journal on Control and Optimization, 53 (2015), 905-925.  doi: 10.1137/140985779.  Google Scholar

[18]

C. Yuan and X. Mao, Robust stability and controllability of stochastic differential delay equations with markovian switching, Automatica, 40 (2004), 343-354.  doi: 10.1016/j.automatica.2003.10.012.  Google Scholar

[19]

H. XuK. L. Teo and X. Liu, Robust stability analysis of guaranteed cost control for impulsive switched systems, IEEE Trans. on Sys. Man. and Cyber. B, 38 (2008), 1419-1422.   Google Scholar

[20]

H. XuY. Chen and K. L. Teo, Global exponential stability of impulsive discrete-time neural networks with time-varying delays, Applied Mathematics and Computation, 217 (2010), 537-544.  doi: 10.1016/j.amc.2010.05.087.  Google Scholar

[21]

Y. ZhangY. ZhaoM. ShiH. Shi and C. Liu, The absolute stability of stochastic control system with Markovian switching, Dynam. Cont. Dis. Ser. A, 21 (2014), 531-547.   Google Scholar

[22]

Y. ZhangY. ZhaoT. Xu and X. Liu, $p$th Moment absolute exponential stability of stochastic control system with Markovian switching, Journal of Industrial and Management Optimization, 12 (2016), 471-486.  doi: 10.3934/jimo.2016.12.471.  Google Scholar

Figure 1.  Computer simulation of the paths of $r(t)$, $x_1(t)$ and $x_2(t)$ for the discrete-time controlled system (17) using the Euler-Maruyama method with step size $10^{-5}$, delay $\tau = 0.01$ and initial values $r(0) = 1$, $\xi_1 \equiv -20$ and $\xi_2 \equiv 10$ on $[-\tau,0]$
Figure 2.  Computer simulation of the paths of $r(t)$, $x_1(t)$ and $x_2(t)$ for the discretetime controlled system (18) with $\alpha = 10^{-4}$ using the Euler-Maruyama method with step size $10^{-5}$, delay $\tau = 0.01$ and initial values $r(0) = 1$, $\xi_1 \equiv -20$ and $\xi_2 \equiv 10$ on $[-\tau,0]$
[1]

Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021082

[2]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[3]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[4]

Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021007

[5]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[6]

Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200

[7]

Akio Matsumoto, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[8]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[9]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[10]

Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021069

[11]

Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021061

[12]

Kehan Si, Zhenda Xu, Ka Fai Cedric Yiu, Xun Li. Open-loop solvability for mean-field stochastic linear quadratic optimal control problems of Markov regime-switching system. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021074

[13]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[14]

Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021083

[15]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[16]

Xianming Liu, Guangyue Han. A Wong-Zakai approximation of stochastic differential equations driven by a general semimartingale. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2499-2508. doi: 10.3934/dcdsb.2020192

[17]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[18]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021025

[19]

Qi Lü, Xu Zhang. A concise introduction to control theory for stochastic partial differential equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021020

[20]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

2019 Impact Factor: 1.27

Metrics

  • PDF downloads (60)
  • HTML views (130)
  • Cited by (0)

Other articles
by authors

[Back to Top]