• PDF
• Cite
• Share
Article Contents  Article Contents

# Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions

• * Corresponding author: Bhargav Kumar Kakumani
The first author would like to thank CSIR (award number: 09/414(0986)/2011-EMR-I) for providing financial support.
• In this paper, we consider a particular type of nonlinear McKend-rick-von Foerster equation with a diffusion term and Robin boundary condition. We prove the existence of a global solution to this equation. The steady state solutions to the equations that we consider have a very important role to play in the study of long time behavior of the solution. Therefore we address the issues pertaining to the existence of solution to the corresponding state equation. Furthermore, we establish that the solution of McKendrick-von Foerster equation with diffusion converges pointwise to the solution of its steady state equations as time tends to infinity.

Mathematics Subject Classification: Primary:35A05, 35A08, 35K20, 35K55.

 Citation: • • Figure 1.  Solutions to (1) and (10) with $d,g,B$ and $u_0$ given in Example 5.1; Left: $u(12,x)$ (continuous line) and $U(x)$ (dotted line) for $0\leq x\leq 10$, Right: The absolute difference between $u(12,x)$ and $U(x)$

Figure 2.  Solutions to (1) and (10) with $d,g,B$ and $u_0$ given in Example 5.2; Left: $u(12,x)$ (continuous line) and $U(x)$ (dotted line) for $0\leq x\leq 5$, Right: The absolute difference between $u(12,x)$ and $U(x)$

Figure 3.  Solutions to (1) and (10) with $d,g,B$ and $u_0$ given in Example 5.3; Left: $u(12,x)$ (continuous line) and $U(x)$ (dotted line) for $0\leq x\leq5$, Right: The absolute difference between $u(12,x)$ and $U(x)$

Figure 4.  Solution to (1) with $d,g,B$ and $u_0$ given in Example 5.3; Left: $u(t,2)$ (continuous line), $u(t,3)$ (dashed line) and $u(t,4)$ (dotted line) for $0\leq t\leq12$, Right: $u|(t,2)-U(2)|$ (continuous line), $|u(t,3)-U(3)|$ (dashed line) and $|u(t,4)-U(4)|$ (dotted line)

Figure 5.  Solutions to (1) and (10) with $d,g,B$ and $u_0$ given in Example 5.4; Left: $u(12,x)$ (continuous line) and $U(x)$ (dotted line) for $0\leq x\leq4$, Right: The absolute difference between $u(12,x)$ and $U(x)$

Figure 6.  Solution to (1) with $d,g,B$ and $u_0$ given in Example 5.4; Left: $u(t,1)$ (continuous line), $u(t,2)$ (dashed line) and $u(t,4)$ (dotted line) for $0\leq t\leq8$, Right: $u|(t,2)-U(2)|$ (continuous line), $|u(t,3)-U(3)|$ (dashed line) and $|u(t,4)-U(4)|$ (dotted line)

• ## Article Metrics  DownLoad:  Full-Size Img  PowerPoint