We construct Lyapunov functionals for delay differential equation models of infectious diseases in vivo to analyze the stability of the equilibria. The Lyapunov functionals contain the terms that integrate over all previous states. An appropriate evaluation of the logarithm functions in those terms guarantees the existence of the integrals. We apply the rigorous analysis for the one-strain models to multistrain models by using mathematical induction.
Citation: |
[1] |
F. V. Atkinson and J. R. Haddock, On determining phase spaces for functional differential
equations, Funkcial. Ekvac., 31 (1988), 331-347.
![]() ![]() |
[2] |
C. J. Browne, A multi-strain virus model with infected cell age structure: application to HIV, Nonlinear Anal., 22 (2015), 354-372.
doi: 10.1016/j.nonrwa.2014.10.004.![]() ![]() ![]() |
[3] |
R. D. Demasse and A. Ducrot, An age-structured within-host model for multistrain malaria
infections, SIAM J. Math. Anal., 73 (2013), 572-593.
doi: 10.1137/120890351.![]() ![]() ![]() |
[4] |
J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.
![]() ![]() |
[5] |
J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM J. Math. Anal., 20 (1989), 388-395.
doi: 10.1137/0520025.![]() ![]() ![]() |
[6] |
Y. Hino, S. Murakami and T. Naito,
Functional Differential Equations with Infinite Delay, Lecture Notes in Mathematics, vol. 1473. Springer, Berlin, 1991.
![]() |
[7] |
A. Iggidr, J.-C. Kamgang, G. Sallet and J.-J. Tewa, Global analysis of new malaria intrahost
models with a competitive exclusion principle, SIAM J. Appl. Math., 67 (2006), 260-278.
doi: 10.1137/050643271.![]() ![]() ![]() |
[8] |
T. Inoue, T. Kajiwara and T. Sasaki, Global stability of models of humoral immunity against
multiple viral strains, J. Biol. Dyn., 4 (2010), 282-295.
doi: 10.1080/17513750903180275.![]() ![]() ![]() |
[9] |
Y. Iwasa, F. Michor and M. Nowak, Some basic properties of immune selection, J. Theoret. Biol., 229 (2004), 179-188.
doi: 10.1016/j.jtbi.2004.03.013.![]() ![]() ![]() |
[10] |
T. Kajiwara, T. Sasaki and Y. Takeuchi, Construction of Lyapunov functions of the models
for infectious diseases in vivo: from simple models to complex models, Math. Biosci. Eng., 12 (2015), 117-133.
![]() ![]() |
[11] |
C. C. McCluskey, Global stability for an SEIR epidemiological model with varying infectivity
and infinite delay, Math. Biosci. Eng., 6 (2009), 603-610.
doi: 10.3934/mbe.2009.6.603.![]() ![]() ![]() |
[12] |
Y. Otani, T. Kajiwara and T. Sasaki, Lyapunov functionals for virus-immune models with
infinite delay, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3093-3114.
doi: 10.3934/dcdsb.2015.20.3093.![]() ![]() ![]() |
[13] |
H. A. Priestley, Introduction to Integration, Oxford University Press, New York, 1997.
![]() ![]() |
[14] |
G. Röst and J. Wu, SEIR epidemiological model with varying infectivity and infinite delay, Math. Biosci. Eng., 5 (2008), 389-402.
doi: 10.3934/mbe.2008.5.389.![]() ![]() ![]() |
[15] |
M. O. Souza and J. P. Zubelli, Global stability for a class of virus models with cytotoxic T
lymphocyte immune response and antigenic variation, Bull. Math. Biol., 73 (2011), 609-625.
doi: 10.1007/s11538-010-9543-2.![]() ![]() ![]() |
[16] |
H. R. Thieme, Uniform weak implies uniform strong persistence for non-autonomous semiflows, Proc. Amer. Math. Soc., 127 (1999), 2395-2403.
doi: 10.1090/S0002-9939-99-05034-0.![]() ![]() ![]() |
[17] |
H. R. Thieme, Pathogen competition and coexistence and the evolution of virulence, Mathematics for Life Sciences and Medicine, Springer, Berlin Heidelberg, (2007), 123-153.
![]() |
[18] |
J. Wang, G. Huang and Y. Takeuchi, Global asymptotic stability for HIV-1 dynamics with
two distributed delays, Math. Med. Biol., 29 (2012), 283-300.
doi: 10.1093/imammb/dqr009.![]() ![]() ![]() |
[19] |
D. Wodarz, Hepatitis C virus dynamics and pathology: The roles of CTL and antibody
responces, J. Gen. Virol., 84 (2003), 1743-1750.
![]() |