This paper looks into the stability of equilibria, existence and non-existence of traveling wave solutions in a diffusive producer-scrounger model. We find that the existence and non-existence of traveling wave solutions are determined by a minimum wave speed $c_{m}$ and a threshold value $R_{0}$. By constructing a suitable invariant convex set $Γ$ and applying Schauder fixed point theorem, the existence for $c>c_{m}, R_{0}>1$ was established. Besides, a Lyapunov function is constructed subtly to explore the asymptotic behaviors of traveling wave solutions. The non-existences of traveling wave solutions for both $c < c_{m}, R_{0}> 1$ and $R_{0}≤1, c > 0$ were obtained by two-sides Laplace transform and reduction method to absurdity.
Citation: |
[1] |
H. Berestycki and F. Hamel, Quenching and propagation in KPP reaction-diffusion equations with a heat loss, Arch. Ration. Mech. Anal., 178 (2005), 57-80.
doi: 10.1007/s00205-005-0367-4.![]() ![]() ![]() |
[2] |
C. Cosner and A. L. Nevai, Spatial population dynamics in a producer-scrounger model, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1591-1607.
doi: 10.3934/dcdsb.2015.20.1591.![]() ![]() ![]() |
[3] |
A. Ducrot and P. Magal, Travelling wave solutions for an infection-age structured epidemic model with external supplies, Nonlinearity, 24 (2011), 2891-2911.
doi: 10.1088/0951-7715/24/10/012.![]() ![]() ![]() |
[4] |
S. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations, J. Math. Biol., 17 (1983), 11-32.
doi: 10.1007/BF00276112.![]() ![]() ![]() |
[5] |
S. Dunbar, Traveling wave solutions of diffusive Lotka-Volterra equations: A heteroclinic connection in $R^{4}$, Trans. Amer. Math. Soc., 286 (1984), 557-594.
doi: 10.2307/1999810.![]() ![]() ![]() |
[6] |
S. Dunbar, Traveling waves in diffusive predator-prey equations: Periodic orbits and point-to periodic heteroclinic orbits, SIAM J. Appl. Math, 46 (1986), 1057-1078.
doi: 10.1137/0146063.![]() ![]() ![]() |
[7] |
Q. T. Gan, R. Xu, Y. L. Li and R. X. Hu, Travelling waves in an infectious disease model with a fixed latent period and a spatio-temporal delay, Math. Comput. Model., 53 (2011), 814-823.
doi: 10.1016/j.mcm.2010.10.018.![]() ![]() ![]() |
[8] |
W. M. Hirsch, H. Hanisch and J. P. Gabriel, Differential equation models of some parasitic infections: methods for the study of asymptotic behavior, Comm. Pure App. Math., 38 (1985), 733-753.
doi: 10.1002/cpa.3160380607.![]() ![]() ![]() |
[9] |
K. Hong and P. X. Weng, Stability and traveling waves of a stage-structured predator-prey model with Holling type-Ⅱ functional response and harvesting, Nonlinear Anal. RWA, 14 (2013), 83-103.
doi: 10.1016/j.nonrwa.2012.05.004.![]() ![]() ![]() |
[10] |
C. H. Hsu, C. R. Yang, T. H. Yang and T. S. Yang, Existence of traveling wave solutions for diffusive predator-prey type systems, J. Diff. Eqns., 252 (2012), 3040-3075.
doi: 10.1016/j.jde.2011.11.008.![]() ![]() ![]() |
[11] |
J. H. Huang, G. Lu and S. G. Ruan, Existence of traveling wave solutions in a diffusive predator-prey model, J. Math. Biol., 46 (2003), 132-153.
doi: 10.1007/s00285-002-0171-9.![]() ![]() ![]() |
[12] |
W. Z. Huang, Traveling wave solutions for a class of predator-prey systems, J. Dyn. Diff. Equat., 24 (2012), 633-644.
doi: 10.1007/s10884-012-9255-4.![]() ![]() ![]() |
[13] |
W. T. Li and S. L. Wu, Traveling waves in a diffusive predator-prey model with holling type-Ⅲ functional response, Chaos, Solitons and Fractals, 37 (2008), 476-486.
doi: 10.1016/j.chaos.2006.09.039.![]() ![]() ![]() |
[14] |
W. T. Li and F. Y. Yang, Traveling waves for a nonlocal dispersal SIR model with standrad incidence, J. Integral Equ. Appl., 26 (2014), 243-273.
doi: 10.1216/JIE-2014-26-2-243.![]() ![]() ![]() |
[15] |
Y. Li, W. T. Li and F. Y. Yang, Traveling waves for a nonlocal dispersal SIR model with delay and external supplies, Appl. Math. Comput., 247 (2014), 723-740.
doi: 10.1016/j.amc.2014.09.072.![]() ![]() ![]() |
[16] |
Y. Li, W. T. Li and G. Lin, Traveling waves of a delayed diffusive SIR epidemic model, Communications on Pure and Applied Analysis, 14 (2015), 1001-1022.
doi: 10.3934/cpaa.2015.14.1001.![]() ![]() ![]() |
[17] |
G. Lin, W. T. Li and M. Ma, Traveling wave solutions in delayed reaction diffusion systems with applications to multi-species models, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 393-414.
doi: 10.3934/dcdsb.2010.13.393.![]() ![]() ![]() |
[18] |
X. B. Lin, P. X. Weng and C. F. Wu, Traveling wave solutions for a predator-prey system with sigmoidal response function, J. Dyn. Diff. Equat., 23 (2011), 903-921.
doi: 10.1007/s10884-011-9220-7.![]() ![]() ![]() |
[19] |
Z. C. Wang and J. H. Wu, Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission, Proc. R. Soc. Ser. A, 466 (2010), 237-264.
doi: 10.1098/rspa.2009.0377.![]() ![]() ![]() |
[20] |
X. S. Wang, H. Wang and J. H. Wu, Traveling waves of diffusive predator-prey systems: Disease outbreak propagation, Discrete Contin. Dyn. Syst. Ser. B, 32 (2012), 3303-3324.
doi: 10.3934/dcds.2012.32.3303.![]() ![]() ![]() |
[21] |
Q. R. Wang and K. Zhou, Traveling wave solutions in delayed reaction-diffusion systems with mixed monotonicity, J. Com. Appl. Math., 233 (2010), 2549-2562.
doi: 10.1016/j.cam.2009.11.002.![]() ![]() ![]() |
[22] |
Z. Q. Xu and P. X. Weng, Traveling waves in a diffusive predator-prey model with general functional response, Electron. J. Differ. Eq., 2012 (2012), 1-13.
![]() ![]() |
[23] |
Z. T. Xu, Traveling waves in a Kermack-McKendrick epidemic model with diffusion and latent period, Nonlinear Anal., 111 (2014), 66-81.
doi: 10.1016/j.na.2014.08.012.![]() ![]() ![]() |
[24] |
F. Y. Yang, Y. Li, W. T. Li and Z. C. Wang, Traveling waves in a nonlocal dispersal Kermack-McKendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 1969-1993.
doi: 10.3934/dcdsb.2013.18.1969.![]() ![]() ![]() |
[25] |
G. B. Zhang, W. T. Li and G. Lin, Traveling waves in delayed predator-prey systems with nonlocal diffusion and stage structure, Math. Comput. Modelling, 49 (2009), 1021-1029.
doi: 10.1016/j.mcm.2008.09.007.![]() ![]() ![]() |