Building on the a priori estimates established in [
Citation: |
[1] |
H. Brezis,
Functional Analysis, {S}obolev Spaces and Partial Differential Equations Universitext. Springer, New York, 2011. ISBN 978-0-387-70913-0.
![]() |
[2] |
A. Castro, M. Hassanpour and R. Shivaji, Uniqueness of non-negative solutions for a semipositone problem with concave nonlinearity, Comm. Partial Differential Equations, 20 (1995), 1927-1936.
doi: 10.1080/03605309508821157.![]() ![]() ![]() |
[3] |
A. Castro and R. Pardo, A priori bounds for positive solutions of subcritical elliptic equations, Revista Matemática Complutense, 28 (2015), 715-731.
doi: 10.1007/s13163-015-0180-z.![]() ![]() ![]() |
[4] |
D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence of
positive solutions of semilinear elliptic equations, J. Math. Pures Appl., 61 (1982), 41-63.
![]() |
[5] |
B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations, 6 (1981), 883-901.
doi: 10.1080/03605308108820196.![]() ![]() ![]() |
[6] |
D. Gilbarg and N. S. Trudinger,
Elliptic Partial Differential Equations Of Second Order volume 224 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin, second edition, 1983. ISBN 3-540-13025-X.
![]() |
[7] |
O. Ladyzhenskaya and N. Uraltseva,
Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis Academic Press, New York-London, 1968.
![]() |
[8] |
S. I. Pohozaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$, Dokl. Akad. Nauk SSSR, 165 (1965), 36-39.
![]() ![]() |