[1]
|
J. Apaloo, J. S. Brown and T. L. Vincent, Evolutionary game theory: ESS, convergence stability, and NIS, Evolutionary Ecology Research, 11 (2009), 489-515.
|
[2]
|
R. M. Anderson and R. M. May, Population biology of infectious diseases: Part Ⅰ, Nature, 280 (1979), 361-367.
doi: 10.1038/280361a0.
|
[3]
|
G. Beck and G. S. Habicht, Immunity and the invertebrates, Scientific American, 275 (1996), 60-66.
doi: 10.1038/scientificamerican1196-60.
|
[4]
|
B. Boldin and O. Diekmann, Superinfections can induce evolutionarily stable coexistence of pathogens, Journal of Mathematical Biology, 56 (2008), 635-672.
doi: 10.1007/s00285-007-0135-1.
|
[5]
|
B. Boldin, S. A. H. Geritz and E. Kisdi, Superinfections and adaptive dynamics of pathogen virulence revisited: A critical function analysis, Evolutionary Ecology Research, 11 (2009), 153-175.
|
[6]
|
R. G. Bowers, The basic depression ratio of the host: The evolution of host resistance to microparasites, Proc. Roy. Soc. Lond. B, 268 (2001), 243-250.
doi: 10.1098/rspb.2000.1360.
|
[7]
|
A. Bugliese, The role of host population heterogeneity in the evolution of virulence, J. Biol. Dyn., 5 (2011), 104-119.
doi: 10.1080/17513758.2010.519404.
|
[8]
|
C. Combes,
The Art of Being a Parasite University of Chicago Press, Chicago, 2005.
|
[9]
|
C. Darwin,
On the Origin of Species John Murray, London, 1859.
|
[10]
|
T. Day, On the evolution of virulence and the relationship between various measures of mortality, Proceedings of the Royal Society of London. Series B: Biological Sciences, 269 (2002), 1317-1323.
doi: 10.1098/rspb.2002.2021.
|
[11]
|
T. Day, Virulence evolution and the timing of disease life-history events, Trends in Ecology & Evolution, 18 (2003), 113-118.
doi: 10.1016/S0169-5347(02)00049-6.
|
[12]
|
T. Day and J. G. Burns, A consideration of patterns of virulence arising from host-parasite coevolution, Evolution, 57 (2003), 671-676.
|
[13]
|
U. Dieckmann and R. Law, The dynamical theory of coevolution: A derivation from stochastic ecological processes, J. Math. Biol., 34 (1996), 579-612.
doi: 10.1007/BF02409751.
|
[14]
|
S. Gandon, M. van Baalen and V. A. A. Janseny, The evolution of parasite virulence, superinfection, and host resistance, The American Naturalist, 159 (2002), 658-669.
|
[15]
|
S. A. H. Geritz, G. Mesz and J. A. J. Metz, Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evolutionary Ecology, 12 (1998), 35-57.
doi: 10.1023/A:1006554906681.
|
[16]
|
S. A. H. Geritz, J. A. J. Metz, É. Kisdi and G. Meszéna, Dynamics of adaptation and evolutionary branching, Physical Review Letters, 78 (1997), 2024-2027.
doi: 10.1103/PhysRevLett.78.2024.
|
[17]
|
B. Hall and B. Hallgrímsson,
Strickberger's Evolution Jones & Bartlett Learning, Burlington, 2008.
|
[18]
|
E. Kisdi, Trade-off geometries and the adaptive dynamics of two co-evolving species, Evolutionary Ecology Research, 8 (2006), 956-973.
|
[19]
|
O. Leimar, Evolutionary change and Darwinian demons, Selection, 2 (2002), 65-72.
doi: 10.1556/Select.2.2001.1-2.5.
|
[20]
|
O. Leimar, Multidimensional convergence stability, Evolutionary Ecology Research, 11 (2009), 191-208.
|
[21]
|
R. L. Lochmiller and C. Deerenberg, Trade-offs in evolutionary immunology: Just what is the cost of immunity, Oikos, 88 (2000), 87-98.
doi: 10.1034/j.1600-0706.2000.880110.x.
|
[22]
|
J. Ma and S. A. Levin, The evolution of resource adaptation: How generalist and specialist consumers evolve, Bull. Math. Bio., 68 (2006), 1111-1123.
doi: 10.1007/s11538-006-9096-6.
|
[23]
|
P. Marrow, U. Dieckmann and R. Law, Evolutionary dynamics of predator-prey systems: An ecological perspective, Journal of Mathematical Biology, 34 (1996), 556-578.
|
[24]
|
C. Matessi and C. Di Pasquale, Long-term evolution of multilocus traits, Journal of Mathematical Biology, 34 (1996), 613-653.
doi: 10.1007/BF02409752.
|
[25]
|
R. M. May and M. A. Nowak, Superinfection, metapopulation dynamics, and the evolution of diversity, Journal of Theoretical Biology, 170 (1994), 95-114.
doi: 10.1006/jtbi.1994.1171.
|
[26]
|
J. Mosquera and F. R. Adler, Evolution of virulence: a unified framework for coinfection and superinfection, Journal of Theoretical Biology, 195 (1998), 293-313.
doi: 10.1006/jtbi.1998.0793.
|
[27]
|
M. Nuño, Z. Feng, M. Martcheva and C. Castillo-Chavez, Dynamics of Two-Strain Influenza with Isolation and Partial Cross-Immunity, SIAM J. Appl. Math., 65 (2005), 964-982.
doi: 10.1137/S003613990343882X.
|
[28]
|
Y. Pei, Closed-form conditions of bifurcation points for general differential equations, International Journal of Bifurcation and Chaos, 15 (2005), 1467-1483.
doi: 10.1142/S0218127405012582.
|
[29]
|
T. O. Svennungsen and É. Kisdi, Evolutionary branching of virulence in a single-infection model, Journal of Theoretical Biology, 257 (2009), 408-418.
doi: 10.1016/j.jtbi.2008.11.014.
|
[30]
|
H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM, J. Appl. Math., 70 (2009), 188-211.
doi: 10.1137/080732870.
|
[31]
|
M. E. J. Woolhouse, J. P. Webster, E. Domingo, B. Charlesworth and B. R. Levin, Biological and biomedical implications of the co-evolution of pathogens and their hosts, Nature Genetics, 32 (2002), 569-577.
doi: 10.1038/ng1202-569.
|