[1]
|
S. Ai, J. Li and J. Lu, Mosquito-stage-structured malaria models and their global dynamics, SIAM J. Appl. Math., 72 (2012), 1213-1237.
doi: 10.1137/110860318.
|
[2]
|
M. Arevalo-Herrera, Y. Solarte, C. Marin, M. Santos, J. Castellanos, J. C. Beier and S. H. Valencia, Malaria transmission blocking immunity and sexual stage vaccines for interrupting malaria transmission in Latin America, Mem Inst Oswaldo Cruz, Rio de Janeiro., 106 (2011), 202-211.
doi: 10.1590/S0074-02762011000900025.
|
[3]
|
J. Arino, A. Ducrot and P. Zongo, A metapopulation model for malaria with transmission-blocking partial immunity in hosts, J. Math. Biol., 64 (2012), 423-448.
doi: 10.1007/s00285-011-0418-4.
|
[4]
|
A. J. Birkett, V. S. Moorthy, C. Loucq, C. E. Chitnis and D. C. Kaslow, Malaria vaccine R&D in the Decade of Vaccines: Breakthroughs, challenges and opportunities, Vaccine, 31 (2013), B233-B243.
doi: 10.1016/j.vaccine.2013.02.040.
|
[5]
|
R. Carter, Transmission blocking malaria vaccines, Vaccine, 19 (2001), 2309-2314.
doi: 10.1016/S0264-410X(00)00521-1.
|
[6]
|
M. C. de Castro, Y. Yamagata, D. Mtasiwa, M. Tanner, J. Utzinger, J. Keiser and B. H. Singer, Integrated urban malaria control: A case study in Dar es Salaam, Tanzania, Am. J. Trop. Med. Hyg., 71 (2004), 103-117.
|
[7]
|
N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272-1296.
doi: 10.1007/s11538-008-9299-0.
|
[8]
|
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R o in models for infectious diseases in heterogeneous populations, J. Math. Biol., 28 (1990), 365-382.
doi: 10.1007/BF00178324.
|
[9]
|
P. V. den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6.
|
[10]
|
X. Feng, S. Ruan, Z. Teng and K. Wang, Stability and backward bifurcation in a malaria transmission model with applications to the control of malaria in China, Math. Biosci., 266 (2015), 52-64.
doi: 10.1016/j.mbs.2015.05.005.
|
[11]
|
K. R Fister, S. Lenhart and J. S McNally, Optimizing Chemotherapy in an HIV Model, Electron. J. Diff. Eqns., (1998), 1-12.
|
[12]
|
S. Gandon, M. J. Mackinnon, S. Nee and A. F. Read, Imperfect vaccines and the evolution of pathogen virulence, Nature, 414 (2001), 751-756.
|
[13]
|
A. B. Gumel, Causes of backward bifurcations in some epidemiological models, J. Math. Anal. Appl., 395 (2012), 355-365.
doi: 10.1016/j.jmaa.2012.04.077.
|
[14]
|
M. E. Halloran and C. J. Struchiner, Modeling transmission dynamics of stage-specific malaria vaccines, Parasitology Today, 8 (1992), 77-85.
doi: 10.1016/0169-4758(92)90240-3.
|
[15]
|
E coli has applications for malaria vaccine,
HematologyTimes 2014. Available from: http://www.hematologytimes.com/p_article.do?id=3845
|
[16]
|
S. Lenhart and J. T Workman,
Optimal Control Applied to Biological Models Chapman and Hall, 2007.
|
[17]
|
N. C. Ngonghalaa, G. A. Ngwa and M. I. Teboh-Ewungkem, Periodic oscillations and backward bifurcation in a model for the dynamics of malaria transmission, Math. Biosci., 240 (2012), 45-62.
doi: 10.1016/j.mbs.2012.06.003.
|
[18]
|
V. Nussenzweig, M. F. Good and A. V. Hill, Mixed results for a malaria vaccine, Nature Medicine, 17 (2011), 1560-1561.
|
[19]
|
L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko,
The Mathematical Theory of Optimal Processes Wiley, New York, 2002.
|
[20]
|
O. Prosper, N. Ruktanonchai and M. Martcheva, Optimal vaccination and bednet maintenance for the control of malaria in a region with naturally acquired immunity, J Theor. Biol., 353 (2014), 142-156.
doi: 10.1016/j.jtbi.2014.03.013.
|
[21]
|
K. Raghavendra, T. K. Barik, B. P. N. Reddy, P. Sharma and A. P. Dash, Malaria vector control: From past to future, Parasitology Research, 108 (2011), 757-779.
doi: 10.1007/s00436-010-2232-0.
|
[22]
|
First Results of Phase 3 Trial of RTS, S/AS01 Malaria Vaccine in African Children, The RTS, S
Clinical Trials Partnership, N. Engl. J. Med. , 365 (2011), 1863–1875.
|
[23]
|
A Phase 3 Trial of RTS, S/AS01 Malaria Vaccine in African Infants, The RTS, S Clinical Trials
Partnership, N. Engl. J. Med. , 367 (2012), 2284–2295.
|
[24]
|
A. Saul, Mosquito stage, transmission blocking vaccines for malaria, Curr. Opin. Infect. Dis, 20 (2007), 476-481.
doi: 10.1097/QCO.0b013e3282a95e12.
|
[25]
|
M. K. Seo, P. Baker and K. N. Ngo, Cost-effectiveness analysis of vaccinating children in Malawi with RTS, S vaccines in comparison with long-lasting insecticide-treated nets, Malaria Journal, 13 (2014), 66-76.
doi: 10.1186/1475-2875-13-66.
|
[26]
|
B. Sharma, Structure and mechanism of a transmission blocking vaccine candidate protein Pfs25 from P. falciparum: a molecular modeling and docking study, In Silico Biol., 8 (2008), 193-206.
|
[27]
|
R. J. Smith, Mathematical models of malaria -a review.Could Low-Efficacy Malaria Vaccines Increase Secondary Infections in Endemic Areas. Mathematical Modeling of Biological Systems Volume Ⅱ Modeling and Simulation in Science, Engineering and Technology, Mathematical Modeling of Biological Systems, Volume Ⅱ, 2 (2008), 3-9.
|
[28]
|
T. A. Smith, N. Chitnis and M. Tanner, Uses of mosquito-stage transmission-blocking vaccines against plasmodium falciparum, Trends in Parasitology, 27 (2011), 190-196.
doi: 10.1016/j.pt.2010.12.011.
|
[29]
|
T. Smith, G. F. Killeen, N. Maire, A. Ross, L. Molineaux, F. Tediosi, G. Hutton, J. Utzinger, K. Dietz and A. M. Tanner, Mathematical Modeling of The Impact of Malaria Vaccines on The Clinical Epidemiology and Natural History of Plasmodium Falciparum Malaria: Overview, Am. J. Trop. Med. Hyg., 75 (2006), 1-10.
|
[30]
|
M. T Teboh-Ewungkem, C. N. Podder and A. Gumel, Mathematical study of the role of gametocytes and an imperfect vaccine on malaria transmission dynamics, Bull. Math. Biol., 72 (2010), 63-93.
doi: 10.1007/s11538-009-9437-3.
|
[31]
|
N. J. White, A vaccine for malaria, N. Engl. J. Med., 365 (2011), 1926-1927.
doi: 10.1056/NEJMe1111777.
|
[32]
|
World Health Organization 2000: Malaria transmission blocking vaccines: An ideal public good (2000) Available from: http://www.who.int/tdr/publications/tdr-research-publications/malaria-transmission-blocking-vaccines/en/.
|
[33]
|
World Malaria Report (2015) Available from: http://www.who.int/malaria/media/world-malaria-report-2015/en/.
|
[34]
|
R. Zhao and J. Mohammed-Awel, A mathematical model studying mosquito-stage transmission-blocking vaccines, Math. Biosci. Eng., 11 (2014), 1229-1245.
doi: 10.3934/mbe.2014.11.1229.
|