
-
Previous Article
Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals
- DCDS-B Home
- This Issue
-
Next Article
Gap solitons for the repulsive Gross-Pitaevskii equation with periodic potential: Coding and method for computation
Stability analysis of an enteropathogen population growing within a heterogeneous group of animals
Faculty of Sciences, Universitat Autónoma de Barcelona, 08193 Bellaterra, 08193 Bellaterra, Barcelona, Spain |
An autonomous semi-linear hyperbolic pde system for the proliferation of bacteria within a heterogeneous population of animals is presented and analysed. It is assumed that bacteria grow inside the intestines and that they can be either attached to the epithelial wall or as free particles in the lumen. A condition involving ecological parameters is given, which can be used to decide the existence of endemic equilibria as well as local stability properties of the non-endemic one. Some implications on phage therapy are addressed.
References:
[1] |
R. J. Atterbury, M. A. van Bergen, F. Ortiz, M. A. Lovell, J. A. Harris, A. De Boer, J. A. Wagenaar, V. M. Allen and P. A. Barrow,
Bacteriophage therapy to reduce salmonella colonization of broiler chickens, Applied and Environmental Microbiology, 73 (2007), 4543-4549.
doi: 10.1128/AEM.00049-07. |
[2] |
M. M. Ballyk, D. A. Jones and H. L. Smith,
Microbial competition in reactors with wall attachment, Microbial Ecology, 41 (2001), 210-221.
doi: 10.1007/s002480000005. |
[3] |
B. Boldin,
Persistence and spread of gastro-intestinal infections: The case of enterotoxigenic escherichia coli in piglets, Bulletin of Mathematical Biology, 70 (2008), 2077-2101.
doi: 10.1007/s11538-008-9348-8. |
[4] |
F. Brauer, Mathematical epidemiology is not an oxymoron BMC Public Health, 9 (2009), S2.
doi: 10.1186/1471-2458-9-S1-S2. |
[5] |
À. Calsina, J. M. Palmada and J. Ripoll,
Optimal latent period in a bacteriophage population model structured by infection-age, Mathematical Models and Methods in Applied Sciences, 21 (2011), 693-718.
doi: 10.1142/S0218202511005180. |
[6] |
À. Calsina and J. J. Rivaud,
A size structured model for bacteria-phages interaction, Nonlinear Analysis: Real World Applications, 15 (2014), 100-117.
doi: 10.1016/j.nonrwa.2013.06.004. |
[7] |
S. Chow and J. K. Hale,
Methods of Bifurcation Theory Springer-Verlag, New York, 1982.
doi: 10.1007/978-1-4613-8159-4. |
[8] |
P. Clément, O. Diekmann, M. Gyllenberg, H. Heijmans and H. R. Thieme,
Perturbation theory for dual semigroups, Mathematische Annalen, 277 (1987), 709-725.
doi: 10.1007/BF01457866. |
[9] |
P. Clément, O. Diekmann, M. Gyllenberg, H. Heijmans and H. R. Thieme,
Perturbation theory for dual semigroups. Ⅲ. nonlinear lipschitz continuous perturbations in the sun-reflexive case, Pitman Research Notes in Mathematics, 190 (1989), 67-89.
|
[10] |
M. E. Coleman, D. W. Dreesen and R. G. Wiegert,
A simulation of microbial competition in the human colonic ecosystem, Applied and Environmental Microbiology, 62 (1996), 3632-3639.
|
[11] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz,
On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, 28 (1990), 365-382.
doi: 10.1007/BF00178324. |
[12] |
O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H. O. Walther,
Delay Equations: Functional-, Complex-, and Nonlinear Analysis Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4206-2. |
[13] |
O. Diekmann, P. Getto and M. Gyllenberg,
Stability and bifurcation analysis of volterra functional equations in the light of suns and stars, SIAM Journal on Mathematical Analysis, 39 (2007), 1023-1069.
doi: 10.1137/060659211. |
[14] |
K. Engel and R. Nagel,
One-parameter Semigroups for Linear Evolution Equations Springer-Verlag, New York, 2000.
doi: 10.1007/b97696. |
[15] |
F. Gaggìa, P. Mattarelli and B. Biavati,
Probiotics and prebiotics in animal feeding for safe food production, International Journal of Food Microbiology, 141 (2010), S15-S28.
|
[16] |
H. W. Hethcote and J. W. van Ark,
Epidemiological models for heterogeneous populations: Proportionate mixing, parameter estimation, and immunization programs, Mathematical Biosciences, 84 (1987), 85-118.
doi: 10.1016/0025-5564(87)90044-7. |
[17] |
H. W. Hethcote,
The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[18] |
M. Lichtner,
Variation of constants formula for hyperbolic systems, Journal of Applied Analysis, 15 (2009), 79-100.
doi: 10.1515/JAA.2009.79. |
[19] |
B. M. Marshall and S. B. Levy,
Food animals and antimicrobials: Impacts on human health, Clinical Microbiology Reviews, 24 (2011), 718-733.
doi: 10.1128/CMR.00002-11. |
[20] |
R. Nagel and J. Poland,
The critical spectrum of strongly continuous semigroup, Advances in Mathematics, 152 (2000), 120-133.
doi: 10.1006/aima.1998.1893. |
[21] |
A. Pazy,
Semigroups of Linear Operators and Applications to Partial Differential Equations Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[22] |
H. L. Smith,
Models of virulent phage growth with application to phage therapy, SIAM Journal on Applied Mathematics, 68 (2008), 1717-1737.
doi: 10.1137/070704514. |
[23] |
H. L. Smith and H. R. Thieme,
Chemostats and epidemics: Competition for nutrients/hosts, Math. Biosci. Eng., 10 (2013), 1635-1650.
doi: 10.3934/mbe.2013.10.1635. |
[24] |
H. R. Thieme,
Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM Journal on Applied Mathematics, 70 (2009), 188-211.
doi: 10.1137/080732870. |
[25] |
W. Wang and X. Zhao,
Threshold dynamics for compartmental epidemic models in periodic environments, Journal of Dynamics and Differential Equations, 20 (2008), 699-717.
doi: 10.1007/s10884-008-9111-8. |
show all references
References:
[1] |
R. J. Atterbury, M. A. van Bergen, F. Ortiz, M. A. Lovell, J. A. Harris, A. De Boer, J. A. Wagenaar, V. M. Allen and P. A. Barrow,
Bacteriophage therapy to reduce salmonella colonization of broiler chickens, Applied and Environmental Microbiology, 73 (2007), 4543-4549.
doi: 10.1128/AEM.00049-07. |
[2] |
M. M. Ballyk, D. A. Jones and H. L. Smith,
Microbial competition in reactors with wall attachment, Microbial Ecology, 41 (2001), 210-221.
doi: 10.1007/s002480000005. |
[3] |
B. Boldin,
Persistence and spread of gastro-intestinal infections: The case of enterotoxigenic escherichia coli in piglets, Bulletin of Mathematical Biology, 70 (2008), 2077-2101.
doi: 10.1007/s11538-008-9348-8. |
[4] |
F. Brauer, Mathematical epidemiology is not an oxymoron BMC Public Health, 9 (2009), S2.
doi: 10.1186/1471-2458-9-S1-S2. |
[5] |
À. Calsina, J. M. Palmada and J. Ripoll,
Optimal latent period in a bacteriophage population model structured by infection-age, Mathematical Models and Methods in Applied Sciences, 21 (2011), 693-718.
doi: 10.1142/S0218202511005180. |
[6] |
À. Calsina and J. J. Rivaud,
A size structured model for bacteria-phages interaction, Nonlinear Analysis: Real World Applications, 15 (2014), 100-117.
doi: 10.1016/j.nonrwa.2013.06.004. |
[7] |
S. Chow and J. K. Hale,
Methods of Bifurcation Theory Springer-Verlag, New York, 1982.
doi: 10.1007/978-1-4613-8159-4. |
[8] |
P. Clément, O. Diekmann, M. Gyllenberg, H. Heijmans and H. R. Thieme,
Perturbation theory for dual semigroups, Mathematische Annalen, 277 (1987), 709-725.
doi: 10.1007/BF01457866. |
[9] |
P. Clément, O. Diekmann, M. Gyllenberg, H. Heijmans and H. R. Thieme,
Perturbation theory for dual semigroups. Ⅲ. nonlinear lipschitz continuous perturbations in the sun-reflexive case, Pitman Research Notes in Mathematics, 190 (1989), 67-89.
|
[10] |
M. E. Coleman, D. W. Dreesen and R. G. Wiegert,
A simulation of microbial competition in the human colonic ecosystem, Applied and Environmental Microbiology, 62 (1996), 3632-3639.
|
[11] |
O. Diekmann, J. A. P. Heesterbeek and J. A. J. Metz,
On the definition and the computation of the basic reproduction ratio r 0 in models for infectious diseases in heterogeneous populations, Journal of Mathematical Biology, 28 (1990), 365-382.
doi: 10.1007/BF00178324. |
[12] |
O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H. O. Walther,
Delay Equations: Functional-, Complex-, and Nonlinear Analysis Springer-Verlag, New York, 1995.
doi: 10.1007/978-1-4612-4206-2. |
[13] |
O. Diekmann, P. Getto and M. Gyllenberg,
Stability and bifurcation analysis of volterra functional equations in the light of suns and stars, SIAM Journal on Mathematical Analysis, 39 (2007), 1023-1069.
doi: 10.1137/060659211. |
[14] |
K. Engel and R. Nagel,
One-parameter Semigroups for Linear Evolution Equations Springer-Verlag, New York, 2000.
doi: 10.1007/b97696. |
[15] |
F. Gaggìa, P. Mattarelli and B. Biavati,
Probiotics and prebiotics in animal feeding for safe food production, International Journal of Food Microbiology, 141 (2010), S15-S28.
|
[16] |
H. W. Hethcote and J. W. van Ark,
Epidemiological models for heterogeneous populations: Proportionate mixing, parameter estimation, and immunization programs, Mathematical Biosciences, 84 (1987), 85-118.
doi: 10.1016/0025-5564(87)90044-7. |
[17] |
H. W. Hethcote,
The mathematics of infectious diseases, SIAM Review, 42 (2000), 599-653.
doi: 10.1137/S0036144500371907. |
[18] |
M. Lichtner,
Variation of constants formula for hyperbolic systems, Journal of Applied Analysis, 15 (2009), 79-100.
doi: 10.1515/JAA.2009.79. |
[19] |
B. M. Marshall and S. B. Levy,
Food animals and antimicrobials: Impacts on human health, Clinical Microbiology Reviews, 24 (2011), 718-733.
doi: 10.1128/CMR.00002-11. |
[20] |
R. Nagel and J. Poland,
The critical spectrum of strongly continuous semigroup, Advances in Mathematics, 152 (2000), 120-133.
doi: 10.1006/aima.1998.1893. |
[21] |
A. Pazy,
Semigroups of Linear Operators and Applications to Partial Differential Equations Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-5561-1. |
[22] |
H. L. Smith,
Models of virulent phage growth with application to phage therapy, SIAM Journal on Applied Mathematics, 68 (2008), 1717-1737.
doi: 10.1137/070704514. |
[23] |
H. L. Smith and H. R. Thieme,
Chemostats and epidemics: Competition for nutrients/hosts, Math. Biosci. Eng., 10 (2013), 1635-1650.
doi: 10.3934/mbe.2013.10.1635. |
[24] |
H. R. Thieme,
Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM Journal on Applied Mathematics, 70 (2009), 188-211.
doi: 10.1137/080732870. |
[25] |
W. Wang and X. Zhao,
Threshold dynamics for compartmental epidemic models in periodic environments, Journal of Dynamics and Differential Equations, 20 (2008), 699-717.
doi: 10.1007/s10884-008-9111-8. |

[1] |
Janet Dyson, Rosanna Villella-Bressan, G.F. Webb. The steady state of a maturity structured tumor cord cell population. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 115-134. doi: 10.3934/dcdsb.2004.4.115 |
[2] |
Inom Mirzaev, David M. Bortz. A numerical framework for computing steady states of structured population models and their stability. Mathematical Biosciences & Engineering, 2017, 14 (4) : 933-952. doi: 10.3934/mbe.2017049 |
[3] |
Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735 |
[4] |
Abed Boulouz. A spatially and size-structured population model with unbounded birth process. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022038 |
[5] |
Leonid Shaikhet. Stability of a positive equilibrium state for a stochastically perturbed mathematical model of glassy-winged sharpshooter population. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1167-1174. doi: 10.3934/mbe.2014.11.1167 |
[6] |
Rinaldo M. Colombo, Mauro Garavello. Stability and optimization in structured population models on graphs. Mathematical Biosciences & Engineering, 2015, 12 (2) : 311-335. doi: 10.3934/mbe.2015.12.311 |
[7] |
Soohyun Bae. Weighted $L^\infty$ stability of positive steady states of a semilinear heat equation in $\R^n$. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 823-837. doi: 10.3934/dcds.2010.26.823 |
[8] |
Stéphane Mischler, Clément Mouhot. Stability, convergence to the steady state and elastic limit for the Boltzmann equation for diffusively excited granular media. Discrete and Continuous Dynamical Systems, 2009, 24 (1) : 159-185. doi: 10.3934/dcds.2009.24.159 |
[9] |
Luca Gerardo-Giorda, Pierre Magal, Shigui Ruan, Ousmane Seydi, Glenn Webb. Preface: Population dynamics in epidemiology and ecology. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : i-ii. doi: 10.3934/dcdsb.2020125 |
[10] |
Shangzhi Li, Shangjiang Guo. Dynamics of a stage-structured population model with a state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3523-3551. doi: 10.3934/dcdsb.2020071 |
[11] |
Federica Di Michele, Bruno Rubino, Rosella Sampalmieri. A steady-state mathematical model for an EOS capacitor: The effect of the size exclusion. Networks and Heterogeneous Media, 2016, 11 (4) : 603-625. doi: 10.3934/nhm.2016011 |
[12] |
Jitendra Kumar, Gurmeet Kaur, Evangelos Tsotsas. An accurate and efficient discrete formulation of aggregation population balance equation. Kinetic and Related Models, 2016, 9 (2) : 373-391. doi: 10.3934/krm.2016.9.373 |
[13] |
Dongxue Yan, Xianlong Fu. Asymptotic analysis of a spatially and size-structured population model with delayed birth process. Communications on Pure and Applied Analysis, 2016, 15 (2) : 637-655. doi: 10.3934/cpaa.2016.15.637 |
[14] |
Xianlong Fu, Dongmei Zhu. Stability analysis for a size-structured juvenile-adult population model. Discrete and Continuous Dynamical Systems - B, 2014, 19 (2) : 391-417. doi: 10.3934/dcdsb.2014.19.391 |
[15] |
Xianlong Fu, Dongmei Zhu. Stability results for a size-structured population model with delayed birth process. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 109-131. doi: 10.3934/dcdsb.2013.18.109 |
[16] |
Hal L. Smith, Horst R. Thieme. Persistence and global stability for a class of discrete time structured population models. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4627-4646. doi: 10.3934/dcds.2013.33.4627 |
[17] |
La-Su Mai, Kaijun Zhang. Asymptotic stability of steady state solutions for the relativistic Euler-Poisson equations. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 981-1004. doi: 10.3934/dcds.2016.36.981 |
[18] |
Mei-hua Wei, Jianhua Wu, Yinnian He. Steady-state solutions and stability for a cubic autocatalysis model. Communications on Pure and Applied Analysis, 2015, 14 (3) : 1147-1167. doi: 10.3934/cpaa.2015.14.1147 |
[19] |
Kousuke Kuto. Stability and Hopf bifurcation of coexistence steady-states to an SKT model in spatially heterogeneous environment. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 489-509. doi: 10.3934/dcds.2009.24.489 |
[20] |
Carmen Cortázar, Marta García-Huidobro, Pilar Herreros. On the uniqueness of bound state solutions of a semilinear equation with weights. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6761-6784. doi: 10.3934/dcds.2019294 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]