\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global existence and asymptotic stability in a competitive two-species chemotaxis system with two signals

Abstract Full Text(HTML) Related Papers Cited by
  • We consider the two-species-two-chemical chemotaxis system

    $\left\{ \begin{array}{l}{u_t}\; = \Delta u - {\chi _1}\nabla \cdot (u\nabla v) + {\mu _1}u(1 - u - {a_1}w),\;\;\;\;\;\;\;x \in \Omega ,t > 0,\\{u_t}\; = \Delta v - v + w,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \Omega ,t > 0,\\{w_t}\; = \Delta w - {\chi _2}\nabla \cdot (w\nabla z) + {\mu _2}w(1 - w - {a_2}u),\;\;\;x \in \Omega ,t > 0,\\{z_t}\; = \Delta z - z + u,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x \in \Omega ,t > 0,\end{array} \right.$

    where $Ω\subset\mathbb{R}^n$ is a bounded domain with smooth boundary. The system models Lotka-Volterra competition of two species coupled with an additional chemotactic influence. In this model each species is attracted by the signal produced by the other.

    We firstly show that if $n=2$ and the parameters in the system above are positive, the solution to the corresponding Neumann initial-boundary value problem, emanating from appropriately regular and nonnegative initial data, is global and bounded.

    Furthermore, we prove asymptotic stabilization of arbitrary global bounded solutions for any $n≥q2$ , in the sense that:

    • If $a_1<1$ , $a_2<1$ and both $\frac{μ_1}{χ_1^2}$ and $\frac{μ_2}{χ_2^2}$ are sufficiently large, then any global solution satisfying $u\not\equiv0\not\equiv w$ converges towards the unique positive spatially homogeneous equilibrium of the system given above.

    and

    • If $a_1≥q 1$ , $a_2<1$ and $\frac{μ_2}{χ_2^2}$ is sufficiently large any global solution satisfying $w\not\equiv0$ tends to $(0,1,1,0)$ as $t\to∞$ .

    Mathematics Subject Classification: Primary:35K35;Secondary:35A01, 35B40, 35B35, 35Q92, 92C17, 92D40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] N. BellomoA. BellouquidY. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.  doi: 10.1142/S021820251550044X.
    [2] P. BilerE.E. Espejo and I. Guerra, Blowup in higher dimensional two species chemotactic systems, Comm. Pure Appl. Math., 12 (2013), 89-98.  doi: 10.3934/cpaa.2013.12.89.
    [3] P. Biler and I. Guerra, Blowup and self-similar solutions for two-component drift-diffusion systems, Nonlinear Anal., 75 (2012), 5186-5193.  doi: 10.1016/j.na.2012.04.035.
    [4] P. BilerW. Hebisch and T. Nadzieja, The Debye system: Existence and large time behavior of solutions, Nonlinear Anal., 23 (1994), 1189-1209.  doi: 10.1016/0362-546X(94)90101-5.
    [5] T. Black, J. Lankeit and M. Mizukami, On the weakly competitive case in a two-species chemotaxis model, IMA J. Appl. Math., 81 (2016), 860–876, arXiv: 1604.03529. doi: 10.1093/imamat/hxw036.
    [6] X. Cao and J. Lankeit, Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities Calc. Var. Partial Differential Equations, 55 (2016), 39 pp, arXiv: 1601.03897. doi: 10.1007/s00526-016-1027-2.
    [7] C. Conca and E. Espejo, Threshold condition for global existence and blow-up to a radially symmetric drift-diffusion system, Appl. Math. Lett., 25 (2012), 352-356.  doi: 10.1016/j.aml.2011.09.013.
    [8] J. H. Connell, The influence of interspecific competition and other factors on the distribution of the barnacle chthamalus stellatus, Ecology, 42 (1961), 710-723.  doi: 10.2307/1933500.
    [9] D. D. Haroske and H. Triebel, Distributions, Sobolev spaces, Elliptic Equations EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2008. doi: 10.4171/042.
    [10] T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.  doi: 10.1007/s00285-008-0201-3.
    [11] D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences. I, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103-165. 
    [12] E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.  doi: 10.1016/0022-5193(70)90092-5.
    [13] K. KutoK. OsakiT. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Physica D: Nonlinear Phenomena, 241 (2012), 1629-1639.  doi: 10.1016/j.physd.2012.06.009.
    [14] O. A. Ladyženskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type Translations of mathematical monographs, American Mathematical Society, 1968.
    [15] J. Lankeit, Chemotaxis can prevent thresholds on population density, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 1499-1527.  doi: 10.3934/dcdsb.2015.20.1499.
    [16] J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Equations, 258 (2015), 1158-1191.  doi: 10.1016/j.jde.2014.10.016.
    [17] Y. Li, Global bounded solutions and their asymptotic properties under small initial data condition in a two-dimensional chemotaxis system for two species, J. Math. Anal. Appl., 429 (2015), 1291-1304.  doi: 10.1016/j.jmaa.2015.04.052.
    [18] G. M. Lieberman, Second Order Parabolic Differential Equations World Scientific Publishing Co. , Inc. , River Edge, NJ, 1996. doi: 10.1142/3302.
    [19] N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 851-875.  doi: 10.1016/j.anihpc.2013.07.007.
    [20] N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional parabolic Keller-Segel system, Preprint.
    [21] M. Mizukami and T. Yokota, Global existence and asymptotic stability of solutions to a two-species chemotaxis system with any chemical diffusion, J. Differential Equations, 261 (2016), 2650-2669.  doi: 10.1016/j.jde.2016.05.008.
    [22] J. D. Murray, Mathematical Biology. I Springer-Verlag, New York, 2002. doi: 10.1007/b98868.
    [23] T. Nagai, Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains, J. Inequal. Appl., 6 (2001), 37-55.  doi: 10.1155/S1025583401000042.
    [24] E. Nakaguchi and M. Efendiev, On a new dimension estimate of the global attractor for chemotaxis-growth systems, Osaka J. Math., 45 (2008), 273-281. 
    [25] E. Nakaguchi and K. Osaki, Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2627-2646.  doi: 10.3934/dcdsb.2013.18.2627.
    [26] M. Negreanu and J. I. Tello, On a two species chemotaxis model with slow chemical diffusion, SIAM J. Math. Anal., 46 (2014), 3761-3781.  doi: 10.1137/140971853.
    [27] M. Negreanu and J. I. Tello, Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant, J. Differential Equations, 258 (2015), 1592-1617.  doi: 10.1016/j.jde.2014.11.009.
    [28] K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D: Nonlinear Phenomena, 240 (2011), 363-375.  doi: 10.1016/j.physd.2010.09.011.
    [29] C. G. Simader, The weak Dirichlet and Neumann problem for the Laplacian in $L^q$ for bounded and exterior domains. Applications, in Nonlinear Analysis, Function Spaces and Applications Vol. 4 (eds. M. Krbec, A. Kufner, B. Opic and J. Rákosník), Teubner-Texte Math., Vieweg+Teubner Verlag, 119 (1990), 180-223.  doi: 10.1007/978-3-663-01272-6_7.
    [30] C. StinnerJ. I. Tello and M. Winkler, Competitive exclusion in a two-species chemotaxis model, J. Math. Biol., 68 (2014), 1607-1626.  doi: 10.1007/s00285-013-0681-7.
    [31] C. StinnerC. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.  doi: 10.1137/13094058X.
    [32] Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant, J. Differential Equations, 257 (2014), 784-815.  doi: 10.1016/j.jde.2014.04.014.
    [33] Y. Tao and M. Winkler, Blow-up prevention by quadratic degradation in a two-dimensional Keller-Segel-Navier-Stokes system Z. Angew. Math. Phys. , 67 (2016), Art. 138, 23 pp. doi: 10.1007/s00033-016-0732-1.
    [34] Y. Tao and M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555-2573.  doi: 10.1007/s00033-015-0541-y.
    [35] Y. Tao and M. Winkler, Boundedness vs. blow-up in a two-species chemotaxis system with two chemicals, Discrete Contin. Dyn. Syst. Ser. B, 20 (2015), 3165-3183.  doi: 10.3934/dcdsb.2015.20.3165.
    [36] Y. Tao and M. Winkler, Boundedness and competitive exclusion in a population model with cross-diffusion for one species, Preprint.
    [37] J. I. Tello and M. Winkler, Stabilization in a two-species chemotaxis system with a logistic source, Nonlinearity, 25 (2012), 1413-1425.  doi: 10.1088/0951-7715/25/5/1413.
    [38] J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.  doi: 10.1080/03605300701319003.
    [39] M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.  doi: 10.1016/j.jmaa.2008.07.071.
    [40] M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.  doi: 10.1016/j.jde.2010.02.008.
    [41] M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.  doi: 10.1080/03605300903473426.
    [42] M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic keller-segel system, J. Math. Pures Appl., 100 (2013), 748-767.  doi: 10.1016/j.matpur.2013.01.020.
    [43] M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Equations, 257 (2014), 1056-1077.  doi: 10.1016/j.jde.2014.04.023.
    [44] M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.  doi: 10.1007/s00332-014-9205-x.
    [45] M. Winkler and X. Bai, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553-583.  doi: 10.1512/iumj.2016.65.5776.
    [46] Q. Zhang and Y. Li, Global existence and asymptotic properties of the solution to a two-species chemotaxis system, J. Math. Anal. Appl., 418 (2014), 47-63.  doi: 10.1016/j.jmaa.2014.03.084.
  • 加载中
SHARE

Article Metrics

HTML views(693) PDF downloads(235) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return