[1]
|
A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier,
Theory of Bifurcations of Dynamic Systems on a Plane John Wiley & Sons and Jerusalem: Israel Program for Scientific Translations, New York, 1973.
|
[2]
|
V. I. Arnold,
Geometrical Methods in the Theory of Ordinary Differential Equation 2$^nd$ edition, Springer-Verlag, Berlin, 1987.
|
[3]
|
S. M. Baer, B. W. Kooi, Yu. A. Kuznetsov and H. R. Thieme, Multiparametric bifurcation analysis of a basic two-stage population model, SIAM J. Appl. Math., 66 (2006), 1339-1365.
doi: 10.1137/050627757.
|
[4]
|
J. Carr,
Applications of Center Manifold Theory Springer-Verlag, New York, 1981.
|
[5]
|
C. Castillo-Chavez, Z. Feng and W. Huang, Global dynamics of a Plant-Herbivore model with toxin-determined functional response, SIAM J. Appl. Math., 72 (2012), 1002-1020.
doi: 10.1137/110851614.
|
[6]
|
S. -N. Chow, C. Li and D. Wang,
Normal Forms and Bifurcation of Planar Vector Fields Cambridge University Press, London, 1994.
doi: 10.1017/CBO9780511665639.
|
[7]
|
W. A. Coppel, Some quadratic systems with at most one limit cycle, Dynamics Reported, 2 (1989), 61-88.
|
[8]
|
F. Dumortier and C. Li, On the uniqueness of limit cycles surrounding one or more singularities in Liénard equations, Nonlinearity, 9 (1996), 1489-1500.
doi: 10.1088/0951-7715/9/6/006.
|
[9]
|
F. Dumortier and C. Li, Quadratic Liénard equations with quadratic damping, J. Differential Equations, 139 (1997), 41-59.
doi: 10.1006/jdeq.1997.3291.
|
[10]
|
F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (Ⅰ) Saddle Loop and Two saddle Cycle, J. Differential Equations, 176 (2001), 114-157.
doi: 10.1006/jdeq.2000.3977.
|
[11]
|
F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (Ⅱ)Cuspidal Loop, J. Differential Equations, 175 (2001), 209-243.
doi: 10.1006/jdeq.2000.3978.
|
[12]
|
F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (Ⅲ)global centre, J. Differential Equations, 188 (2003), 473-511.
doi: 10.1016/S0022-0396(02)00110-9.
|
[13]
|
F. Dumortier and C. Li, Perturbations from an elliptic Hamiltonian of degree four: (Ⅳ)figure eight-loop, J. Differential Equations, 188 (2003), 512-554.
doi: 10.1016/S0022-0396(02)00111-0.
|
[14]
|
F. Dumortier, R. Roussarie, J. Sotomayor and H. Zoladek,
Bifurcations of Planar Vector Fields. Nilpotent Singularities and Abelian integrals Springer-Verlag, Berlin, 1991.
doi: 10.1007/BFb0098353.
|
[15]
|
F. Dumortier and C. Rousseau, Cubic Liénard equations with linear damping, Nonlinearity, 3 (1990), 1015-1039.
doi: 10.1088/0951-7715/3/4/004.
|
[16]
|
J. Guckenheimer and P. Holmes,
Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields Springer-Verlag, New York, 1990.
doi: 10.1007/978-1-4612-1140-2.
|
[17]
|
C. Hayashi,
Non-linear Oscillations in Physical Systems McGraw Hill Construction, New York, 1964.
|
[18]
|
P. Holmes and D. A. Rand, Phase portraits and bifurcations of the nonlinear oscillator $\ddot x+(α+γ x^2)\dot x+β x+δ x^3=0$, Int. J. Non-linear Mech., 15 (1980), 449-458.
|
[19]
|
E. Horozov, Versal deformations of equivariant vector fields for cases of symmetry of order 2 and 3(In Russian), Trusdy Sem. Petrov., 5 (1979), 163-192.
|
[20]
|
L. S. Jacobsen and R. S. Ayre,
Engineering Vibrations McGraw Hill Construction, New York, 1958.
|
[21]
|
Yu. A. Kuznetsov, Practical computation of normal forms on center manifolds at degenerate Bogdanov-Takens bifurcations, Int. J. Bifurc. Chaos, 15 (2005), 3535-3546.
doi: 10.1142/S0218127405014209.
|
[22]
|
N. Levinson and O. K. Smith, A general equation for relaxation oscillations, J. Duke Math., 9 (1942), 382-403.
doi: 10.1215/S0012-7094-42-00928-1.
|
[23]
|
C. Li and J. Llibre, Uniqueness of limit cycles for Liénard differential equations of degree four, J. Differential Equations, 252 (2012), 3142-3162.
doi: 10.1016/j.jde.2011.11.002.
|
[24]
|
A. Lins, W. de Melo and C. C. Pugh, On Liénard's equation, Lecture Notes in Math., 597 (1977), 335-357.
|
[25]
|
N. Minorsky,
Nonlinear Oscillations Van Nostrand's Scientific Encyclopedia, Chicago, 1962.
|
[26]
|
L. M. Perko, A global analysis of the Bogdanov-Takens system, SIAM J. Appl. Math., 52 (1992), 1172-1192.
doi: 10.1137/0152069.
|
[27]
|
S. Ruan and D. Xiao, Global analysis in a Predator-Prey system with nonmonotonic functional response, SIAM J. Appl. Math., 61 (2001), 1445-1472.
doi: 10.1137/S0036139999361896.
|
[28]
|
G. Sansone, Sopra lequazione di Liénard delle oscillazioni di rilassamento (In Italian), Ann. Mat. Pura Appl., 28 (1949), 153-181.
doi: 10.1007/BF02411124.
|
[29]
|
G. Sansone and R. Conti,
Non-linear Differential Equations Pergamon Press, Oxford City, 1964.
|
[30]
|
S. Timoshenko,
Vibration Problems in Engineering 24$^{th}$ edition, John Wiley & Sons, Inc. , New Jersey, 1974.
|
[31]
|
Z. Zhang, T. Ding, W. Huang and Z. Dong,
Qualitative Theory of Differential Equations Transl. Math. Monogr. , Amer. Math. Soc. , Providence, RI, 1992.
|