June  2017, 22(4): 1329-1339. doi: 10.3934/dcdsb.2017064

A general decay result for a multi-dimensional weakly damped thermoelastic system with second sound

1. 

Applied Mathematics Laboratory, Setif 1 University, 19000, Algeria

2. 

Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

* Corresponding author: Salah Drabla

Received  April 2015 Revised  December 2016 Published  February 2017

In this article we consider an n-dimensional system of thermoelasticity with second sound in the presence of a weak frictional damping. We establish an explicit and general decay rate result, using some properties of convex functions. Our result is obtained without imposing any restrictive growth assumption on the frictional damping term.

Citation: Salah Drabla, Salim A. Messaoudi, Fairouz Boulanouar. A general decay result for a multi-dimensional weakly damped thermoelastic system with second sound. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1329-1339. doi: 10.3934/dcdsb.2017064
References:
[1]

F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim., 51 (2005), 61-105.  doi: 10.1007/s00245.

[2] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. 
[3]

F. Boulanouar and S. Drabla, General boundary stabilization result of memory-type thermoelasticity with second sound, Electron. J. Diff. Equ., 2014 (2014), 1-18. 

[4]

C. Cattaneo, Sulla condizione del calore, Atti Del Semin. Matem. E Fis. Della Univ. Modena, 3 (1949), 83-101. 

[5]

C. CavalcantiM. M. DomingosV. N. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, J. Differential Equations, 236 (2007), 407-459.  doi: 10.1016/j.jde.2007.02.004.

[6]

B. D. ColemanW. J. Hrusa and D. R. Owen, Stability of equilibrium for a nonlinear hyperbolic system describing heat propagation by second sound in solids, Arch. Ration. Mech. Anal., 94 (1986), 267-289.  doi: 10.1007/BF00279867.

[7]

I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Diff. Integral Eq., 6 (1993), 507-533. 

[8]

I. Lasiecka and D. Toundykov, Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms, Nonlinear Anal., 64 (2006), 1757-1797.  doi: 10.1016/j.na.2005.07.024.

[9]

, Regularity of higher energies of wave equation with nonlinear localized damping and a nonlinear source, Nonlinear Anal., 69 (2008), 898-910.  doi: 10.1016/j.na.2008.02.069.

[10]

W. J. Liu and E. Zuazua, Decay rates for dissipative wave equations, Ricerche Mat., 48 (1999), 61-75. 

[11]

J. C. Maxwell, On the Dynamical Theory of Gases, The Philosophical Transactions of the Royal Society, 157 (1867), 49-88. 

[12]

S. A. Messaoudi, Local Existence and blow up in thermoelasticity with second sound, Comm. Partial Diff. Eqns., 27 (2002), 1681-1693.  doi: 10.1081/PDE-120005852.

[13]

S. Messaoudi and A. Al-Shehri, General boundary stabilization of memory-type thermoelasticity with second sound, Z. Anal. Anwend., 31 (2012), 441-461.  doi: 10.4171/ZAA/1468.

[14]

S. A. Messaoudi and B. Madani, A general decay result for a memory-type thermoelasticity with second sound, Applicable Analysis., 93 (2014), 1663-1673.  doi: 10.1080/00036811.2013.842230.

[15]

S. A. Messaoudi and M. I. Mustafa, General energy decay rates for a weakly damped wave equation, Commun. Math. Anal., 9 (2010), 67-76. 

[16]

S. A. Messaoudi and B. Said-Houari, Exponential Stability in one-dimensional nonlinear thermoelasticity with second sound, Math. Meth. Appl. Sci., 28 (2005), 205-232.  doi: 10.1002/mma.556.

[17]

, Blow up of solutions with positive energy in nonlinear thermoelasticity with second sound, J. Appl. Math., 2004 (2004), 201-211. 

[18]

M. I. Mustafa, Boundary stabilization of memory-type thermoelasticity with second sound, Z. Angew. Math. Phys., 63 (2012), 777-792.  doi: 10.1007/s00033-011-0190-8.

[19]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied mathematical Sciences 44, Springer-Verlag, 1983. doi: 10.1007/978-1-4612-5561-1.

[20]

Y. QinZ. Ma and X. Yang, Exponential stability for nonlinear thermoelastic equations with second sound, Nonlinear Anal. Real World Appl., 11 (2010), 2502-2513.  doi: 10.1016/j.nonrwa.2009.08.006.

[21]

R. Racke, Thermoelasticity with second sound-exponential stability in linear and nonlinear 1-d, Math. Meth. Appl. Sci., 25 (2002), 409-441.  doi: 10.1002/mma.298.

[22]

, Asymptotic behavior of solutions in linear 2-or 3-d thermoelasticity with second sound, Quart. Appl. Math., 61 (2003), 315-328.  doi: 10.1090/qam/1976372.

[23]

R. Racke and Y. Wang, Nonlinear well-posedness and rates of decay in thermoelasticity with second sound, J. Hyperbolic Differ. Equ., 5 (2008), 25-43.  doi: 10.1142/S021989160800143X.

[24]

M. A. Tarabek, On the existence of smooth solutions in one-dimensional thermoelasticity with second sound, Quart. Appl. Math., 50 (1992), 727-742.  doi: 10.1090/qam/1193663.

show all references

References:
[1]

F. Alabau-Boussouira, Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems, Appl. Math. Optim., 51 (2005), 61-105.  doi: 10.1007/s00245.

[2] V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer-Verlag, New York, 1989. 
[3]

F. Boulanouar and S. Drabla, General boundary stabilization result of memory-type thermoelasticity with second sound, Electron. J. Diff. Equ., 2014 (2014), 1-18. 

[4]

C. Cattaneo, Sulla condizione del calore, Atti Del Semin. Matem. E Fis. Della Univ. Modena, 3 (1949), 83-101. 

[5]

C. CavalcantiM. M. DomingosV. N. Cavalcanti and I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, J. Differential Equations, 236 (2007), 407-459.  doi: 10.1016/j.jde.2007.02.004.

[6]

B. D. ColemanW. J. Hrusa and D. R. Owen, Stability of equilibrium for a nonlinear hyperbolic system describing heat propagation by second sound in solids, Arch. Ration. Mech. Anal., 94 (1986), 267-289.  doi: 10.1007/BF00279867.

[7]

I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equation with nonlinear boundary damping, Diff. Integral Eq., 6 (1993), 507-533. 

[8]

I. Lasiecka and D. Toundykov, Energy decay rates for the semilinear wave equation with nonlinear localized damping and source terms, Nonlinear Anal., 64 (2006), 1757-1797.  doi: 10.1016/j.na.2005.07.024.

[9]

, Regularity of higher energies of wave equation with nonlinear localized damping and a nonlinear source, Nonlinear Anal., 69 (2008), 898-910.  doi: 10.1016/j.na.2008.02.069.

[10]

W. J. Liu and E. Zuazua, Decay rates for dissipative wave equations, Ricerche Mat., 48 (1999), 61-75. 

[11]

J. C. Maxwell, On the Dynamical Theory of Gases, The Philosophical Transactions of the Royal Society, 157 (1867), 49-88. 

[12]

S. A. Messaoudi, Local Existence and blow up in thermoelasticity with second sound, Comm. Partial Diff. Eqns., 27 (2002), 1681-1693.  doi: 10.1081/PDE-120005852.

[13]

S. Messaoudi and A. Al-Shehri, General boundary stabilization of memory-type thermoelasticity with second sound, Z. Anal. Anwend., 31 (2012), 441-461.  doi: 10.4171/ZAA/1468.

[14]

S. A. Messaoudi and B. Madani, A general decay result for a memory-type thermoelasticity with second sound, Applicable Analysis., 93 (2014), 1663-1673.  doi: 10.1080/00036811.2013.842230.

[15]

S. A. Messaoudi and M. I. Mustafa, General energy decay rates for a weakly damped wave equation, Commun. Math. Anal., 9 (2010), 67-76. 

[16]

S. A. Messaoudi and B. Said-Houari, Exponential Stability in one-dimensional nonlinear thermoelasticity with second sound, Math. Meth. Appl. Sci., 28 (2005), 205-232.  doi: 10.1002/mma.556.

[17]

, Blow up of solutions with positive energy in nonlinear thermoelasticity with second sound, J. Appl. Math., 2004 (2004), 201-211. 

[18]

M. I. Mustafa, Boundary stabilization of memory-type thermoelasticity with second sound, Z. Angew. Math. Phys., 63 (2012), 777-792.  doi: 10.1007/s00033-011-0190-8.

[19]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied mathematical Sciences 44, Springer-Verlag, 1983. doi: 10.1007/978-1-4612-5561-1.

[20]

Y. QinZ. Ma and X. Yang, Exponential stability for nonlinear thermoelastic equations with second sound, Nonlinear Anal. Real World Appl., 11 (2010), 2502-2513.  doi: 10.1016/j.nonrwa.2009.08.006.

[21]

R. Racke, Thermoelasticity with second sound-exponential stability in linear and nonlinear 1-d, Math. Meth. Appl. Sci., 25 (2002), 409-441.  doi: 10.1002/mma.298.

[22]

, Asymptotic behavior of solutions in linear 2-or 3-d thermoelasticity with second sound, Quart. Appl. Math., 61 (2003), 315-328.  doi: 10.1090/qam/1976372.

[23]

R. Racke and Y. Wang, Nonlinear well-posedness and rates of decay in thermoelasticity with second sound, J. Hyperbolic Differ. Equ., 5 (2008), 25-43.  doi: 10.1142/S021989160800143X.

[24]

M. A. Tarabek, On the existence of smooth solutions in one-dimensional thermoelasticity with second sound, Quart. Appl. Math., 50 (1992), 727-742.  doi: 10.1090/qam/1193663.

[1]

Mohammad Al-Gharabli, Mohamed Balegh, Baowei Feng, Zayd Hajjej, Salim A. Messaoudi. Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term. Evolution Equations and Control Theory, 2022, 11 (4) : 1149-1173. doi: 10.3934/eect.2021038

[2]

Yuxi Hu, Na Wang. On global solutions in one-dimensional thermoelasticity with second sound in the half line. Communications on Pure and Applied Analysis, 2015, 14 (5) : 1671-1683. doi: 10.3934/cpaa.2015.14.1671

[3]

Makram Hamouda, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2975-2992. doi: 10.3934/dcdss.2021001

[4]

Salim A. Messaoudi, Abdelfeteh Fareh. Exponential decay for linear damped porous thermoelastic systems with second sound. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 599-612. doi: 10.3934/dcdsb.2015.20.599

[5]

Abdelaziz Soufyane, Belkacem Said-Houari. The effect of the wave speeds and the frictional damping terms on the decay rate of the Bresse system. Evolution Equations and Control Theory, 2014, 3 (4) : 713-738. doi: 10.3934/eect.2014.3.713

[6]

Antonio Magaña, Alain Miranville, Ramón Quintanilla. On the time decay in phase–lag thermoelasticity with two temperatures. Electronic Research Archive, 2019, 27: 7-19. doi: 10.3934/era.2019007

[7]

Jun-Ren Luo, Ti-Jun Xiao. Decay rates for second order evolution equations in Hilbert spaces with nonlinear time-dependent damping. Evolution Equations and Control Theory, 2020, 9 (2) : 359-373. doi: 10.3934/eect.2020009

[8]

Zhiqing Liu, Zhong Bo Fang. Global solvability and general decay of a transmission problem for kirchhoff-type wave equations with nonlinear damping and delay term. Communications on Pure and Applied Analysis, 2020, 19 (2) : 941-966. doi: 10.3934/cpaa.2020043

[9]

Gongwei Liu. The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electronic Research Archive, 2020, 28 (1) : 263-289. doi: 10.3934/era.2020016

[10]

Guanrong Li, Yanping Chen, Yunqing Huang. A hybridized weak Galerkin finite element scheme for general second-order elliptic problems. Electronic Research Archive, 2020, 28 (2) : 821-836. doi: 10.3934/era.2020042

[11]

Ivan C. Christov. On a C-integrable equation for second sound propagation in heated dielectrics. Evolution Equations and Control Theory, 2019, 8 (1) : 57-72. doi: 10.3934/eect.2019004

[12]

Pedro M. Jordan. Second-sound phenomena in inviscid, thermally relaxing gases. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 2189-2205. doi: 10.3934/dcdsb.2014.19.2189

[13]

Wenjun Liu, Biqing Zhu, Gang Li, Danhua Wang. General decay for a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping, dynamic boundary conditions and a time-varying delay term. Evolution Equations and Control Theory, 2017, 6 (2) : 239-260. doi: 10.3934/eect.2017013

[14]

Zhuangyi Liu, Ramón Quintanilla. Time decay in dual-phase-lag thermoelasticity: Critical case. Communications on Pure and Applied Analysis, 2018, 17 (1) : 177-190. doi: 10.3934/cpaa.2018011

[15]

Juan Carlos Marrero, David Martín de Diego, Eduardo Martínez. Local convexity for second order differential equations on a Lie algebroid. Journal of Geometric Mechanics, 2021, 13 (3) : 477-499. doi: 10.3934/jgm.2021021

[16]

Tuan Anh Dao, Hironori Michihisa. Study of semi-linear $ \sigma $-evolution equations with frictional and visco-elastic damping. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1581-1608. doi: 10.3934/cpaa.2020079

[17]

Denis Mercier, Virginie Régnier. Decay rate of the Timoshenko system with one boundary damping. Evolution Equations and Control Theory, 2019, 8 (2) : 423-445. doi: 10.3934/eect.2019021

[18]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[19]

Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic and Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605

[20]

Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, Irena Lasiecka, Flávio A. Falcão Nascimento. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete and Continuous Dynamical Systems - B, 2014, 19 (7) : 1987-2011. doi: 10.3934/dcdsb.2014.19.1987

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (139)
  • HTML views (84)
  • Cited by (1)

[Back to Top]