[1]
|
H. Berestycki and F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math., 55 (2002), 949-1032.
doi: 10.1002/cpa.3022.
|
[2]
|
H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. i. species persistence, J. Math. Biol., 51 (2005), 75-113.
doi: 10.1007/s00285-004-0313-3.
|
[3]
|
H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment model. ii. biological invasions and pulsating travelling fronts, J. Math. Pures Appl. (9), 84 (2005), 1101-1146.
doi: 10.1016/j.matpur.2004.10.006.
|
[4]
|
H. Berestycki and L. Rossi, Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains, Comm. Pure Appl. Math., 68 (2015), 1014-1065.
doi: 10.1002/cpa.21536.
|
[5]
|
M. Conti, S. Terracini and G. Verzini, Asymptotic estimates for the spatial segregation of competitive systems, Adv. Math., 195 (2005), 524-560.
doi: 10.1016/j.aim.2004.08.006.
|
[6]
|
E. C. M. Crooks, E. N. Dancer and D. Hilhorst, On long-time dynamics for competition-diffusion systems with inhomogeneous Dirichlet boundary conditions, Topol. Methods Nonlinear Anal., 30 (2007), 1-36.
|
[7]
|
E. C. M. Crooks, E. N. Dancer, D. Hilhorst, M. Mimura and H. Ninomiya, Spatial segregation limit of a competition-diffusion system with dirichlet boundary conditions, Nonlinear Anal. Real World Appl., 5 (2004), 645-665.
doi: 10.1016/j.nonrwa.2004.01.004.
|
[8]
|
E. N. Dancer and Y. H. Du, Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations, 114 (1994), 434-475.
doi: 10.1006/jdeq.1994.1156.
|
[9]
|
E. N. Dancer and Z. M. Guo, Some remarks on the stability of sign changing solutions, Tohoku Math. J. (2), 47 (1995), 199-225.
doi: 10.2748/tmj/1178225592.
|
[10]
|
E. N. Dancer, D. Hilhorst, M. Mimura and L. A. Peletier, Spatial segregation limit of a competition-diffusion system, European J. Appl. Math., 10 (1999), 97-115.
doi: 10.1017/S0956792598003660.
|
[11]
|
E. N. Dancer, K. Wang and Z. Zhang, Dynamics of strongly competing systems with many species, Trans. Amer. Math. Soc., 364 (2012), 961-1005.
doi: 10.1090/S0002-9947-2011-05488-7.
|
[12]
|
E. N. Dancer and Z. Zhang, Dynamics of Lotka-Volterra competition systems with large interaction, J. Differential Equations, 182 (2002), 470-489.
doi: 10.1006/jdeq.2001.4102.
|
[13]
|
D. G. de Figueiredo and E. Mitidieri, Maximum principles for linear elliptic systems, Rend. Istit. Mat. Univ. Trieste, 22 (1990), 36-66.
|
[14]
|
W. Ding, F. Hamel and X. -Q. Zhao, Bistable pulsating fronts for reaction-diffusion equations in a periodic habitat, ArXiv e-prints, arXiv: 1408.0723 [math. AP].
|
[15]
|
J. Dockery, V. Hutson, K. Mischaikow and M. Pernarowski, The evolution of slow dispersal rates: A reaction diffusion model, J. Math. Biol., 37 (1998), 61-83.
doi: 10.1007/s002850050120.
|
[16]
|
J. Fang, X. Yu and X. -Q. Zhao, Traveling waves and spreading speeds for time-space periodic monotone systems, ArXiv e-prints, arXiv: 1504.03788 [math. AP].
|
[17]
|
J. Fang and X.-Q. Zhao, Bistable traveling waves for monotone semiflows with applications, J. Eur. Math. Soc. (JEMS), 17 (2015), 2243-2288.
doi: 10.4171/JEMS/556.
|
[18]
|
J. E. Furter and J. López-Gómez, On the existence and uniqueness of coexistence states for the lotka-volterra competition model with diffusion and spatially dependent coefficients, Nonlinear Anal., 25 (1995), 363-398.
doi: 10.1016/0362-546X(94)00139-9.
|
[19]
|
R. A. Gardner, Existence and stability of travelling wave solutions of competition models: a degree theoretic approach, J. Differential Equations, 44 (1982), 343-364.
doi: 10.1016/0022-0396(82)90001-8.
|
[20]
|
L. Girardin and G. Nadin, Travelling waves for diffusive and strongly competitive systems: relative motility and invasion speed, European J. Appl. Math., 26 (2015), 521-534.
doi: 10.1017/S0956792515000170.
|
[21]
|
L. Girardin and G. Nadin, Competition in periodic media: Ⅱ-Segregative limit of pulsating fronts and "Unity is not Strength"-type result, ArXiv e-prints, arXiv: 1611.03237 [math. AP].
|
[22]
|
J.-S. Guo and C.-H. Wu, Recent developments on wave propagation in 2-species competition systems, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 2713-2724.
doi: 10.3934/dcdsb.2012.17.2713.
|
[23]
|
V. Hutson, Y. Lou and K. Mischaikow, Spatial heterogeneity of resources versus lotka-volterra dynamics, J. Differential Equations, 185 (2002), 97-136.
doi: 10.1006/jdeq.2001.4157.
|
[24]
|
Y. Kan-on, Parameter dependence of propagation speed of travelling waves for competition-diffusion equations, SIAM J. Math. Anal., 26 (1995), 340-363.
doi: 10.1137/S0036141093244556.
|
[25]
|
X. Mora, Semilinear parabolic problems define semiflows on $C^k$ spaces, Trans. Amer. Math. Soc., 278 (1983), 21-55.
doi: 10.2307/1999300.
|
[26]
|
G. Nadin, Traveling fronts in space-time periodic media, J. Math. Pures Appl. (9), 92 (2009), 232-262.
doi: 10.1016/j.matpur.2009.04.002.
|
[27]
|
G. Nadin, Some dependence results between the spreading speed and the coefficients of the space-time periodic Fisher-KPP equation, European J. Appl. Math., 22 (2011), 169-185.
doi: 10.1017/S0956792511000027.
|
[28]
|
C.-V. Pao, Coexistence and stability of a competition-diffusion system in population dynamics, J. Math. Anal. Appl., 83 (1981), 54-76.
doi: 10.1016/0022-247X(81)90246-8.
|
[29]
|
H. F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., 45 (2002), 511-548.
doi: 10.1007/s00285-002-0169-3.
|
[30]
|
X. Yu and X.-Q. Zhao, Propagation phenomena for a reaction-advection-diffusion competition model in a periodic habitat, Journal of Dynamics and Differential Equations, (2015), 1-26.
doi: 10.1007/s10884-015-9426-1.
|
[31]
|
A. Zlatos, Existence and non-existence of transition fronts for bistable and ignition reactions, ArXiv e-prints, 2016, arXiv: 1503.07599 [math. AP].
doi: 10.1016/j.anihpc.2016.11.004.
|