Bifurcation of nonradial solutions from radial solutions of
$-Δ u=λ e^u$
in expanding annuli of ${\mathbb{R}^N}$ with $3 ≤q N ≤q 9$ is studied. To obtain the main results, we use a blow-up argument via Morse indices of the regular entire solutions of (0.1).
Citation: |
[1] |
T. Bartsch, M. Clapp, M. Grossi and F. Pacella, Asymptotically radial solutions in expanding annular domains, Math. Ann., 352 (2012), 485-515.
doi: 10.1007/s00208-011-0646-3.![]() ![]() ![]() |
[2] |
M. G. Crandall and P. H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Rational Mech. Anal., 58 (1975), 207-218.
doi: 10.1007/BF00280741.![]() ![]() ![]() |
[3] |
E. N. Dancer and A. Faria, On the classification of solutions of $-Δ u=e^u$ on ${\mathbb{R}^N}$ : stability outside a compact set and applications, Proc. Amer. Math. Soc., 137 (2009), 1333-1338.
doi: 10.1090/S0002-9939-08-09772-4.![]() ![]() ![]() |
[4] |
L. Dupaigne,
Stable Solutions of Elliptic Partial Differential Equations Chapman & Hall / CRC Monographs and Surveys in Pure and Applied Mathematics, 143 2011.
doi: 10.1201/b10802.![]() ![]() ![]() |
[5] |
A. Farina, Stable solutions of $-Δ u=e^u$ on ${\mathbb{R}^N}$, C. R. Acad. Sci. Paris, 345 (2007), 63-66.
doi: 10.1016/j.crma.2007.05.021.![]() ![]() ![]() |
[6] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68 (1979), 209-243.
doi: 10.1007/BF01221125.![]() ![]() ![]() |
[7] |
F. Gladiali, M. Grossi, F. Pacella and P. N. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus, Calc. Var. PDEs, 40 (2011), 295-317.
doi: 10.1007/s00526-010-0341-3.![]() ![]() ![]() |
[8] |
Y. Y. Li, Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differential Equations, 83 (1990), 348-376.
doi: 10.1016/0022-0396(90)90062-T.![]() ![]() ![]() |
[9] |
S. S. Lin, Asymptotic behavior of positive solutions to semilinear elliptic equations on expanding annuli, J. Differential Equations, 120 (1995), 255-288.
doi: 10.1006/jdeq.1995.1112.![]() ![]() ![]() |
[10] |
S. S. Lin, Existence of many positive nonradial solutions for nonlinear elliptic equations on an annulus, J. Differential Equations, 103 (1993), 338-349.
doi: 10.1006/jdeq.1993.1053.![]() ![]() ![]() |
[11] |
S. S. Lin, Existence of positive nonradial solutions for nonlinear elliptic equations in annular domains, Trans. Amer. Math. Soc., 332 (1992), 775-791.
doi: 10.1090/S0002-9947-1992-1055571-1.![]() ![]() ![]() |
[12] |
S. S. Lin, Positive radial solutions and nonradial bifurcations for semilinear elliptic equations in annular domains, J. Differential Equations, 86 (1990), 367-391.
doi: 10.1016/0022-0396(90)90035-N.![]() ![]() ![]() |
[13] |
K. Nagasaki and T. Suzuki, Radial and nonradial solutions for the nonlinear eigenvalue problem $Δ u + λ e^u = 0$ on annuli in $\mathbb{R}^2$, J. Differential Equations, 87 (1990), 144-168.
doi: 10.1016/0022-0396(90)90020-P.![]() ![]() ![]() |
[14] |
K. Nagasaki and T. Suzuki, Radial solutions of $Δ u + λ e^u = 0$ on annuli in higher demensions, J. Differential Equations, 100 (1992), 137-161.
doi: 10.1016/0022-0396(92)90129-B.![]() ![]() ![]() |
[15] |
K. Nagasaki and T. Suzuki, Spectral and related properties about the Emdent-Fower equation $Δ u + λ e^u = 0$ on circular domains, Math. Ann., 299 (1994), 1-15.
doi: 10.1007/BF01459770.![]() ![]() ![]() |
[16] |
R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl., 89 (1971), 217-258.
doi: 10.1007/BF02414948.![]() ![]() ![]() |
[17] |
P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513.
doi: 10.1016/0022-1236(71)90030-9.![]() ![]() ![]() |
[18] |
P. H. Rabinowitz, Some aspects of nonlinear eigenvalue problems, Rocky Mountain J. Math., 3 (1973), 161-202.
doi: 10.1216/RMJ-1973-3-2-161.![]() ![]() ![]() |
[19] |
J. Smoller and A. Wasserman, Symmetry-breaking for solutions of semilinear elliptic equations with general boundary conditions, Comm. Math. Phys., 105 (1986), 415-441.
doi: 10.1007/BF01205935.![]() ![]() ![]() |