September  2017, 22(7): 2521-2541. doi: 10.3934/dcdsb.2017084

Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion

1. 

Laboratory of Mathematics, Univ Sidi Bel Abbes, PoBox 89,22000 Sidi-Bel-Abbes, Algeria

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160,41080 Sevilla, Spain

1 Corresponding author

Received  July 2016 Revised  September 2016 Published  March 2017

Fund Project: This work has been partially supported by grant MTM2015-63723-P (MINECO/FEDER, EU) and Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía) under grant 2010/FQM314 and Proyecto de Excelencia P12-FQM-1492.

This paper is concerned with the existence and continuous dependence of mild solutions to stochastic differential equations with non-instantaneous impulses driven by fractional Brownian motions. Our approach is based on a Banach fixed point theorem and Krasnoselski-Schaefer type fixed point theorem.

Citation: Ahmed Boudaoui, Tomás Caraballo, Abdelghani Ouahab. Stochastic differential equations with non-instantaneous impulses driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (7) : 2521-2541. doi: 10.3934/dcdsb.2017084
References:
[1]

H. M. Ahmed, Semilinear neutral fractional stochastic integro-differential equations with nonlocal conditions, J. Theoret. Probab., 28 (2015), 667-680.  doi: 10.1007/s10959-013-0520-1.  Google Scholar

[2]

E. AlosO. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes, Ann. Probab., 29 (2001), 766-801.  doi: 10.1214/aop/1008956692.  Google Scholar

[3]

C. Avramescu, Some remarks on a fixed point theorem of Krasnoselskii, Electron. J. Qual. Theory Differ. Equ., 5 (2003), 1-15.   Google Scholar

[4]

J. Bao and Z. Hou, Existence of mild solutions to stochastic neutral partial functional differential equations with non-Lipschitz coefficients, Comput. Math. Appl., 59 (2010), 207-214.  doi: 10.1016/j.camwa.2009.08.035.  Google Scholar

[5]

I. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hungar., 7 (1956), 81-94.  doi: 10.1007/BF02022967.  Google Scholar

[6]

A. BoudaouiT. Caraballo and A. Ouahab, Existence of mild solutions to stochastic delay evolution equations with a fractional Brownian motion and impulses, Stoch. Anal. Appl., 33 (2015), 244-258.  doi: 10.1080/07362994.2014.981641.  Google Scholar

[7]

A. BoudaouiT. Caraballo and A. Ouahab, Impulsive stochastic functional differential inclusions driven by a fractional Brownian motion with infinite delay, Math. Meth. Appl. Sci., 39 (2016), 1435-1451.  doi: 10.1002/mma.3580.  Google Scholar

[8]

A. BoudaouiT. Caraballo and A. Ouahab, Impulsive neutral functional differential equations driven by a fractional Brownian motion with unbounded delay, Appl. Anal., 95 (2016), 2039-2062.  doi: 10.1080/00036811.2015.1086756.  Google Scholar

[9]

B. Boufoussi and S. Hajji, Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett., 82 (2012), 1549-1558.  doi: 10.1016/j.spl.2012.04.013.  Google Scholar

[10]

G. CaoK. He and X. Zhang, Successive approximations of infinite dimensional SDES with jump, Stoch. Dyn., 5 (2005), 609-619.  doi: 10.1142/S0219493705001584.  Google Scholar

[11]

T. CaraballoM. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[12]

T. Caraballo, Mamadou A. Diop, Neutral stochastic delay partial functional integro-differential equations driven by a fractional Brownian motion, Front. Math. China, 8 (2013), 745-760.  doi: 10.1007/s11464-013-0300-3.  Google Scholar

[13]

M. M. El-BoraiK. EI-Said EI-Nadi and H. A. Fouad, On some fractional stochastic delay differential equations, Comput. Math. Appl., 59 (2010), 1165-1170.  doi: 10.1016/j.camwa.2009.05.004.  Google Scholar

[14]

G. R. Gautam and J. Dabas, Existence result of fractional functional integrodifferential equation with not instantaneous impulse, Int. J. Adv. Appl. Math. Mech, 1 (2014), 11-21.   Google Scholar

[15]

T. E. Govindan, Almost sure exponential stability for stochastic neutral partial functional differential equations, Stochastics, 77 (2005), 139-154.  doi: 10.1080/10451120512331335181.  Google Scholar

[16]

J. R. Graef, J. Henderson and A. Ouahab, Impulsive Differential Inclusions. A Fixed Point Approach De Gruyter Series in Nonlinear Analysis and Applications, 20. De Gruyter, Berlin, 2013. doi: 10.1515/9783110295313.  Google Scholar

[17]

J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.   Google Scholar

[18]

E. Hernández and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.  doi: 10.1090/S0002-9939-2012-11613-2.  Google Scholar

[19]

F. Jiang and Y. Shen, A note on the existence and uniqueness of mild solutions to neutral stochastic partial functional differential equations with non-Lipschitz coefficients, Comput. Math. Appl., 61 (2011), 1590-1594.  doi: 10.1016/j.camwa.2011.01.027.  Google Scholar

[20]

V. Lakshmikantham, D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations Series in Modern Applied Mathematics, 6. World Scientific Publishing Co. , Inc. , Teaneck, NJ, 1989. doi: 10.1142/0906.  Google Scholar

[21]

X. Li and M. Bohner, An impulsive delay differential inequality and applications, Comput. Math. Appl., 64 (2012), 1875-1881.  doi: 10.1016/j.camwa.2012.03.013.  Google Scholar

[22]

X. Li and X. Fu, On the global exponential stability of impulsive functional differential equations with infinite delays or finite delays, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 442-447.  doi: 10.1016/j.cnsns.2013.07.011.  Google Scholar

[23]

Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Topics Lecture Notes in Mathematics, 1929. Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-75873-0.  Google Scholar

[24]

D. Nualart, The Malliavin Calculus and Related Topics, 2nd ed. Probability and its Applications (New York). Springer-Verlag, Berlin, 2006.  Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[26]

M. PierriD. O'Regan and V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comp., 219 (2013), 6743-6749.  doi: 10.1016/j.amc.2012.12.084.  Google Scholar

[27]

R. Sakthivel and J. Luo, Asymptotic stability of impulsive stochastic partial differential equations with infinite delays, J. Math. Anal. Appl., 356 (2009), 1-6.  doi: 10.1016/j.jmaa.2009.02.002.  Google Scholar

[28]

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations World Scientific, Singapore 1995. doi: 10.1142/9789812798664.  Google Scholar

[29]

G. Shen and Y. Ren, Neutral stochastic partial differential equations with delay driven by Rosenblatt process in a Hilbert space, J. Korean Statist. Soc., 44 (2015), 123-133.  doi: 10.1016/j.jkss.2014.06.002.  Google Scholar

[30]

T. Taniguchi, Successive approximations to solutions of stochastic differential equations, J. Differential Equations, 96 (1992), 152-169.  doi: 10.1016/0022-0396(92)90148-G.  Google Scholar

[31]

S. TindelC. Tudor and F. Viens, Stochastic evolution equations with fractional Brownian motion, Probab. Theory Related Fields, 127 (2003), 186-204.  doi: 10.1007/s00440-003-0282-2.  Google Scholar

[32]

J. R. WangY. Zhou and Z. Lin, On a new class of impulsive fractional differential equations, Appl. Math. Comput., 242 (2014), 649-657.  doi: 10.1016/j.amc.2014.06.002.  Google Scholar

[33]

Z. Yan and X. Yan, Existence of solutions for impulsive partial stochastic neutral integro-differential equations with state-dependent delay, Collect. Math., 64 (2013), 235-250.  doi: 10.1007/s13348-012-0063-2.  Google Scholar

[34]

Q. Zhu, Asymptotic stability in the $p$th moment for stochastic differential equations with Levy noise, J. Math. Anal. Appl., 416 (2014), 126-142.  doi: 10.1016/j.jmaa.2014.02.016.  Google Scholar

show all references

References:
[1]

H. M. Ahmed, Semilinear neutral fractional stochastic integro-differential equations with nonlocal conditions, J. Theoret. Probab., 28 (2015), 667-680.  doi: 10.1007/s10959-013-0520-1.  Google Scholar

[2]

E. AlosO. Mazet and D. Nualart, Stochastic calculus with respect to Gaussian processes, Ann. Probab., 29 (2001), 766-801.  doi: 10.1214/aop/1008956692.  Google Scholar

[3]

C. Avramescu, Some remarks on a fixed point theorem of Krasnoselskii, Electron. J. Qual. Theory Differ. Equ., 5 (2003), 1-15.   Google Scholar

[4]

J. Bao and Z. Hou, Existence of mild solutions to stochastic neutral partial functional differential equations with non-Lipschitz coefficients, Comput. Math. Appl., 59 (2010), 207-214.  doi: 10.1016/j.camwa.2009.08.035.  Google Scholar

[5]

I. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hungar., 7 (1956), 81-94.  doi: 10.1007/BF02022967.  Google Scholar

[6]

A. BoudaouiT. Caraballo and A. Ouahab, Existence of mild solutions to stochastic delay evolution equations with a fractional Brownian motion and impulses, Stoch. Anal. Appl., 33 (2015), 244-258.  doi: 10.1080/07362994.2014.981641.  Google Scholar

[7]

A. BoudaouiT. Caraballo and A. Ouahab, Impulsive stochastic functional differential inclusions driven by a fractional Brownian motion with infinite delay, Math. Meth. Appl. Sci., 39 (2016), 1435-1451.  doi: 10.1002/mma.3580.  Google Scholar

[8]

A. BoudaouiT. Caraballo and A. Ouahab, Impulsive neutral functional differential equations driven by a fractional Brownian motion with unbounded delay, Appl. Anal., 95 (2016), 2039-2062.  doi: 10.1080/00036811.2015.1086756.  Google Scholar

[9]

B. Boufoussi and S. Hajji, Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space, Statist. Probab. Lett., 82 (2012), 1549-1558.  doi: 10.1016/j.spl.2012.04.013.  Google Scholar

[10]

G. CaoK. He and X. Zhang, Successive approximations of infinite dimensional SDES with jump, Stoch. Dyn., 5 (2005), 609-619.  doi: 10.1142/S0219493705001584.  Google Scholar

[11]

T. CaraballoM. J. Garrido-Atienza and T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684.  doi: 10.1016/j.na.2011.02.047.  Google Scholar

[12]

T. Caraballo, Mamadou A. Diop, Neutral stochastic delay partial functional integro-differential equations driven by a fractional Brownian motion, Front. Math. China, 8 (2013), 745-760.  doi: 10.1007/s11464-013-0300-3.  Google Scholar

[13]

M. M. El-BoraiK. EI-Said EI-Nadi and H. A. Fouad, On some fractional stochastic delay differential equations, Comput. Math. Appl., 59 (2010), 1165-1170.  doi: 10.1016/j.camwa.2009.05.004.  Google Scholar

[14]

G. R. Gautam and J. Dabas, Existence result of fractional functional integrodifferential equation with not instantaneous impulse, Int. J. Adv. Appl. Math. Mech, 1 (2014), 11-21.   Google Scholar

[15]

T. E. Govindan, Almost sure exponential stability for stochastic neutral partial functional differential equations, Stochastics, 77 (2005), 139-154.  doi: 10.1080/10451120512331335181.  Google Scholar

[16]

J. R. Graef, J. Henderson and A. Ouahab, Impulsive Differential Inclusions. A Fixed Point Approach De Gruyter Series in Nonlinear Analysis and Applications, 20. De Gruyter, Berlin, 2013. doi: 10.1515/9783110295313.  Google Scholar

[17]

J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.   Google Scholar

[18]

E. Hernández and D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641-1649.  doi: 10.1090/S0002-9939-2012-11613-2.  Google Scholar

[19]

F. Jiang and Y. Shen, A note on the existence and uniqueness of mild solutions to neutral stochastic partial functional differential equations with non-Lipschitz coefficients, Comput. Math. Appl., 61 (2011), 1590-1594.  doi: 10.1016/j.camwa.2011.01.027.  Google Scholar

[20]

V. Lakshmikantham, D. Bainov and P. Simeonov, Theory of Impulsive Differential Equations Series in Modern Applied Mathematics, 6. World Scientific Publishing Co. , Inc. , Teaneck, NJ, 1989. doi: 10.1142/0906.  Google Scholar

[21]

X. Li and M. Bohner, An impulsive delay differential inequality and applications, Comput. Math. Appl., 64 (2012), 1875-1881.  doi: 10.1016/j.camwa.2012.03.013.  Google Scholar

[22]

X. Li and X. Fu, On the global exponential stability of impulsive functional differential equations with infinite delays or finite delays, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 442-447.  doi: 10.1016/j.cnsns.2013.07.011.  Google Scholar

[23]

Y. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Topics Lecture Notes in Mathematics, 1929. Springer-Verlag, Berlin, 2008. doi: 10.1007/978-3-540-75873-0.  Google Scholar

[24]

D. Nualart, The Malliavin Calculus and Related Topics, 2nd ed. Probability and its Applications (New York). Springer-Verlag, Berlin, 2006.  Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[26]

M. PierriD. O'Regan and V. Rolnik, Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses, Appl. Math. Comp., 219 (2013), 6743-6749.  doi: 10.1016/j.amc.2012.12.084.  Google Scholar

[27]

R. Sakthivel and J. Luo, Asymptotic stability of impulsive stochastic partial differential equations with infinite delays, J. Math. Anal. Appl., 356 (2009), 1-6.  doi: 10.1016/j.jmaa.2009.02.002.  Google Scholar

[28]

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations World Scientific, Singapore 1995. doi: 10.1142/9789812798664.  Google Scholar

[29]

G. Shen and Y. Ren, Neutral stochastic partial differential equations with delay driven by Rosenblatt process in a Hilbert space, J. Korean Statist. Soc., 44 (2015), 123-133.  doi: 10.1016/j.jkss.2014.06.002.  Google Scholar

[30]

T. Taniguchi, Successive approximations to solutions of stochastic differential equations, J. Differential Equations, 96 (1992), 152-169.  doi: 10.1016/0022-0396(92)90148-G.  Google Scholar

[31]

S. TindelC. Tudor and F. Viens, Stochastic evolution equations with fractional Brownian motion, Probab. Theory Related Fields, 127 (2003), 186-204.  doi: 10.1007/s00440-003-0282-2.  Google Scholar

[32]

J. R. WangY. Zhou and Z. Lin, On a new class of impulsive fractional differential equations, Appl. Math. Comput., 242 (2014), 649-657.  doi: 10.1016/j.amc.2014.06.002.  Google Scholar

[33]

Z. Yan and X. Yan, Existence of solutions for impulsive partial stochastic neutral integro-differential equations with state-dependent delay, Collect. Math., 64 (2013), 235-250.  doi: 10.1007/s13348-012-0063-2.  Google Scholar

[34]

Q. Zhu, Asymptotic stability in the $p$th moment for stochastic differential equations with Levy noise, J. Math. Anal. Appl., 416 (2014), 126-142.  doi: 10.1016/j.jmaa.2014.02.016.  Google Scholar

[1]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[2]

Litan Yan, Xiuwei Yin. Optimal error estimates for fractional stochastic partial differential equation with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 615-635. doi: 10.3934/dcdsb.2018199

[3]

Guolian Wang, Boling Guo. Stochastic Korteweg-de Vries equation driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5255-5272. doi: 10.3934/dcds.2015.35.5255

[4]

Brahim Boufoussi, Soufiane Mouchtabih. Controllability of neutral stochastic functional integro-differential equations driven by fractional brownian motion with Hurst parameter lesser than $ 1/2 $. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020096

[5]

Shaokuan Chen, Shanjian Tang. Semi-linear backward stochastic integral partial differential equations driven by a Brownian motion and a Poisson point process. Mathematical Control & Related Fields, 2015, 5 (3) : 401-434. doi: 10.3934/mcrf.2015.5.401

[6]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 473-493. doi: 10.3934/dcdsb.2010.14.473

[7]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[8]

Yong Ren, Xuejuan Jia, Lanying Hu. Exponential stability of solutions to impulsive stochastic differential equations driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2157-2169. doi: 10.3934/dcdsb.2015.20.2157

[9]

Yong Xu, Rong Guo, Di Liu, Huiqing Zhang, Jinqiao Duan. Stochastic averaging principle for dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 1197-1212. doi: 10.3934/dcdsb.2014.19.1197

[10]

Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257

[11]

Yejuan Wang, Tongtong Liang. Mild solutions to the time fractional Navier-Stokes delay differential inclusions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3713-3740. doi: 10.3934/dcdsb.2018312

[12]

Jin Li, Jianhua Huang. Dynamics of a 2D Stochastic non-Newtonian fluid driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2483-2508. doi: 10.3934/dcdsb.2012.17.2483

[13]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4927-4962. doi: 10.3934/dcdsb.2020320

[14]

Priscila Santos Ramos, J. Vanterler da C. Sousa, E. Capelas de Oliveira. Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020100

[15]

Yousef Alnafisah, Hamdy M. Ahmed. Neutral delay Hilfer fractional integrodifferential equations with fractional brownian motion. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021031

[16]

Qi Yao, Linshan Wang, Yangfan Wang. Existence-uniqueness and stability of the mild periodic solutions to a class of delayed stochastic partial differential equations and its applications. Discrete & Continuous Dynamical Systems - B, 2021, 26 (9) : 4727-4743. doi: 10.3934/dcdsb.2020310

[17]

Tyrone E. Duncan. Some linear-quadratic stochastic differential games for equations in Hilbert spaces with fractional Brownian motions. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : 5435-5445. doi: 10.3934/dcds.2015.35.5435

[18]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[19]

Tomás Caraballo, María J. Garrido–Atienza, Björn Schmalfuss, José Valero. Asymptotic behaviour of a stochastic semilinear dissipative functional equation without uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 439-455. doi: 10.3934/dcdsb.2010.14.439

[20]

María J. Garrido–Atienza, Kening Lu, Björn Schmalfuss. Local pathwise solutions to stochastic evolution equations driven by fractional Brownian motions with Hurst parameters $H\in (1/3,1/2]$. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2553-2581. doi: 10.3934/dcdsb.2015.20.2553

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (185)
  • HTML views (95)
  • Cited by (9)

[Back to Top]