\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Blow-up phenomena for nonlinear pseudo-parabolic equations with gradient term

  • Author Bio: E-mail address: svernier@unica.it; E-mail address: giuseppe.viglialoro@unica.it
  • Monica Marras, E-mail address: mmarras@unica.it

    Monica Marras, E-mail address: mmarras@unica.it 
Abstract Full Text(HTML) Related Papers Cited by
  • This paper is concerned with the pseudo-parabolic problem

    $\left\{ \begin{array}{l}\begin{split}u_t- \lambda \triangle u_t=& k(t) \text{div}(g(| \nabla u|^2) \nabla u) +f(t,u,| \nabla u| ) \quad {\rm in} \ \Omega \times (0, t^*), \\[6pt] u=&0 \ \qquad {\rm on} \ \partial \Omega \times (0,t^*),\\[6pt] u ({ x},0) =& u_0 ({ x}) \quad {\rm in} \ \Omega,\\[6pt]\end{split}\end{array} \right.$

    where $\Omega$ is a bounded domain in $\mathbb{R}^n, \ n\geq 2$, with smooth boundary $ \partial \Omega$, $ k$ is a positive constant or in general positive derivable function of $t$. The solution $u(x,t)$ may or may not blow up in finite time. Under suitable conditions on data, a lower bound for $t^*$ is derived, where $[0,t^*)$ is the time interval of existence of $u(x,t).$ We indicate how some of our results can be extended to a class of nonlinear pseudo-parabolic systems.

    Mathematics Subject Classification: Primary:35K70, 35B44;Secondary:35B44.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. B. Al'Shin, M. O. Korpusov and A. G. Sveshnikov, Blow-up in Nonlinear Sobolev Type Equations, De Gruyter Series in Nonlinear Analysis and Applications, 2011.
    [2]

    G. I. Barenblatt, I. P. Zeltov and I. N. Kockina, Basic concepts in the theory of seepage, J. Sov. Appl. Math. Mech., 24 (1960), 852-864.

    [3]

    G. I. Barenblatt, Yu. P. Zheltov and I. N. Kochina, Foundations of filtration theory in cracked media, Appl. Math. Mech., 24 (1960), 58-73.

    [4]

    P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Anghew. Math. Phys., 19 (1968), 614-627.

    [5]

    E. Di Benedetto and M. Pierre, On the maximum principle for pseudoparabolic Equations, Indiana Univ. Math. J., 30 (1981), 821-854.

    [6]

    H. A. Levine, Some nonexistence and instability theorems for solutions of formally parabolic equations of the form Put = -Au + F(u), Arch. Rational Mech. Anal., 51 (1973), 371-386.

    [7]

    P. Luo, Blow-up phenomena for a pseudo-parabolic equation, Math. Meth. Appl. Sci., 38 (2015), 2636-2641.

    [8]

    M. Marras and S. Vernier Piro, On global existence and bounds for blow-up time in non linear parabolic problems with time dependent coefficients, Discrete Contin. Dyn. Syst., 2013 (2013), 535-544.

    [9]

    M. Marras and S. Vernier-Piro, Blow up and decay bounds in quasilinear parabolic problems, Discrete Contin. Dyn. Syst., 2007 (2007), 704-712.

    [10]

    M. Marras, S. Vernier-Piro and G. Viglialoro, Estimates from below of blow-up time in a parabolic system with gradient term, International Journal of Pure and Applied Mathematics, 93 (2014), 297-306.

    [11]

    M. Marras, S. Vernier-Piro and G. Viglialoro, Lower bounds for blow-up time in a parabolic problem with a gradient term under various boundary conditions, Kodai Mathematical Journal, 37 (2014), 532-543.

    [12]

    G. A. Philippin, Lower bounds for blow-up time in a class of nonlinear wave equations, Z. Angew. Math. Phys., 66 (2015), 129-134.

    [13]

    R. E. Showalter and T. W. Ting, Pseudoparabolic partial differential equations, SIAM J. Math. Anal., 1 (1970), 1-26.

    [14]

    S. L. Sobolev, On a new problem of mathematical physics, Izv. Akad. Nauk SSSR Ser. Mat., 18 (1954), 3-50.

    [15]

    T. W. Ting, Parabolic and pseudo-parabolic partial differential equations, J. Math. Soc. Japan, 21 (1969) 440-453.

    [16]

    G. Viglialoro, On the blow-up time of a parabolic system with damping terms, Comptes Rendus de L'Academie Bulgare des Sciences, 67 (2014), 1223-1232.

    [17]

    R. Xu and J. Su, Global existence and finite time blow-up for a class of semilinear pseudoparabolic equations, J. Funct. Anal., 264 (2013), 2732-2763.

  • 加载中
SHARE

Article Metrics

HTML views(336) PDF downloads(217) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return