\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On some difference equations with exponential nonlinearity

Abstract Full Text(HTML) Related Papers Cited by
  • The problem of the existence of complex $\ell_1$ solutions of two difference equations with exponential nonlinearity is studied, one of which is nonautonomous. As a consequence, several information are obtained regarding the asymptotic stability of their equilibrium points, as well as the corresponding generating function and $z-$ transform of their solutions. The results, which are obtained using a general theorem based on a functional-analytic technique, provide also a rough estimate of the region of attraction of each equilibrium point for the autonomous case. When restricted to real solutions, the results are compared with other recently published results.

    Mathematics Subject Classification: Primary:39A30, 39A22;Secondary:39A45.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. S. Ackleh and P. L. Salceanu, Competitive exclusion and coexistence in an $n-$species Ricker model, J. Biol. Dynamics, 9 (2015), 321-331.  doi: 10.1080/17513758.2015.1020576.
    [2] D. Aruğaslan and L. Güzel, Stability of the logistic population model with generalized piecewise constant delays, Adv. Difference Equations, 2015 (2015).
    [3] I. Györi and L. Horváth, A new view of the $\ell^p$ -theory for a system of higher order difference equations, Comput. Math. Appl., 59 (2010), 2918-2932.  doi: 10.1016/j.camwa.2010.02.010.
    [4] I. Györi and L. Horváth, $\ell^p$ -solutions and stability analysis of difference equations using the Kummer's test, Appl. Math. Comput., 217 (2011), 10129-10145.  doi: 10.1016/j.amc.2011.05.008.
    [5] T. Hüls and C. Pötzsche, Qualitative analysis of a nonautonomous Beverton-Holt Ricker model, SIAM J. Appl. Dyn. Syst., 13 (2014), 1442-1488.  doi: 10.1137/140955434.
    [6] E. K. Ifantis, On the convergence of power series whose coefficients satisfy a Poincaré-type linear and nonlinear difference equation, Complex Variables Theory Appl., 9 (1987), 63-80.  doi: 10.1080/17476938708814250.
    [7] Y. Kang and H. Smith, Global dynamics of a discrete two-species Lottery-Ricker competition model, J. Biol. Dynamics, 6 (2012), 358-376.  doi: 10.1080/17513758.2011.586064.
    [8] R. May, Simple mathematical models with very complicated dynamics, Nature, 261 (1976), 459-467.  doi: 10.1007/978-0-387-21830-4_7.
    [9] G. PapaschinopoulosN. Fotiades and C. J. Schinas, On a system of difference equations including negative exponential terms, J. Differ. Equations Appl., 20 (2014), 717-732.  doi: 10.1080/10236198.2013.814647.
    [10] G. PapaschinopoulosM. A. Radin and C. J. Schinas, On the system of two difference equations of exponential form: $x_{n+1}=a+bx_{n-1}e^{-y_{n}}$, $y_{n+1}=c+dy_{n-1}e^{-x_{n}}$, Math. Comp. Mod., 54 (2011), 2969-2977.  doi: 10.1016/j.mcm.2011.07.019.
    [11] E. N. Petropoulou and P. D. Siafarikas, Functional analysis and partial difference equations, in Some Recent Advances in Partial Difference Equations (ed. E. N. Petropoulou), Bentham eBooks (2010), 49–76.
    [12] W. E. Ricker, Stock and recruitmnet, J. Fish. Res. Board Canada, 11 (1954), 559-623. 
    [13] G. StefanidouG. Papaschinopoulos and C. J. Schinas, On a system of two exponential type difference equations, Comm. Appl. Nonlinear Anal., 17 (2010), 1-13. 
    [14] S. Stevic, On a discrete epidemic model Discrete Dynam. Nat. Soc. , 2007 (2007), Article ID 87519, 10pp. doi: 10.1155/2007/87519.
  • 加载中
SHARE

Article Metrics

HTML views(384) PDF downloads(168) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return