[1]

L. Ahlfors and M. Heins, Questions of regularity connected with the PhragménLindelöf principle, Ann. of Math., 50 (1949), 341346.

[2]

H. Aikawa, On the behavior at infinity of nonnegative superharmonic functions in a half space, Hiroshima Math. J., 11 (1981), 425441.

[3]

H. Aikawa and M. Essén, Potential theoryselected topics. Lecture Notes in Mathematics, 1633, SpringerVerlag, Berlin, 1996.

[4]

V. S. Azarin, Generalization of a theorem of Hayman's on a subharmonic function in an ndimensional cone (Russian), Mat. Sb. (N.S.), 66 (1965), 248264.

[5]

R. Courant and D. Hilbert, Methods of Mathematical Physics. Vol. I. Interscience Publishers, Inc. , New York, N. Y. , 1953.

[6]

M. Cranston, Conditional Brownian motion, Whitney squares and the conditional gauge theorem, Seminar on Stochastic Processes, 1988 (Gainesville, FL, 1988), 109119, Progr. Probab. , 17, Birkhäuser Boston, Boston, MA, 1989.

[7]

M. Cranston, E. Fabes and Z. Zhao, Conditional gauge and potential theory for the Schrödinger operator, Trans. Amer. Math. Soc., 307 (1988), 171194.

[8]

M. Essén and H. L. Jackson, On the covering properties of certain exceptional sets in a halfspace, Hiroshima Math. J., 10 (1980), 233262.

[9]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, SpringerVerlag, Berlin, 2001.

[10]

P. Hartman, Ordinary Differential Equations, John Wiley and Sons, Inc. , New YorkLondonSydney, 1964.

[11]

J. LelongFerrand, Étude au voisinage de la frontière des fonctions surharmoniques positives dans un demiespace, Ann. Sci. École Norm. Sup., 66 (1949), 125159.

[12]

B. Ya. Levin and A. I. Kheyfits, Asymptotic behavior of subfunctions of timeindependent Schrödinger operator, in Some Topics on Value Distribution and Differentiability in Complex and Padic Analysis (eds. A. Escassut, W. Tutschke and C. C. Yang), Science Press, 11 (2008), 323397.

[13]

I. Miyamoto and H. Yoshida, Two criterions of Wiener type for minimally thin sets and rarefied sets in a cone, J. Math. Soc. Japan., 54 (2002), 487512.

[14]

I. Miyamoto, Two criteria of Wiener type for minimally thin sets and rarefied sets in a cylinder, Hokkaido Math. J., 36 (2007), 507534.

[15]

Y. Mizuta, Potential theory in Euclidean spaces. GAKUTO International Series. Mathematical Sciences and Applications, 6, Gakkötosho Co. , Ltd. , Tokyo, 1996.

[16]

L. Qiao, Weak solutions for the stationary Schrödinger equation and its application, Appl. Math. Lett., 63 (2017), 3439.

[17]

L. Qiao and G. Deng, Growth properties of modified αpotentials in the upperhalf space, Filomat, 27 (2013), 703712.

[18]

L. Qiao and G. Deng, Minimally thin sets at infinity with respect to the Schrödinger operator, Sci. Sin. Math., 44 (2014), 12471256.

[19]

L. Qiao and G. Pan, Integral representations of generalized harmonic functions, Taiwanese J. Math., 17 (2013), 15031521.

[20]

L. Qiao and G. Pan, Lowerbound estimates for a class of harmonic functions and applications to Masaev's type theorem, Bull. Sci. Math., 140 (2016), 7085.

[21]

L. Qiao and Y. Ren, ntegral representations for the solutions of infinite order of the stationary Schrödinger equation in a cone, Monats. Math., 173 (2014), 593603.

[22]

B. Simon, Schrödinger semigroups, Bull. Amer. Math. Soc., 7 (1982), 447526.

[23]

H. Yoshida and I. Miyamoto, Solutions of the Dirichlet problem on a cone with continuous data, J. Math. Soc. Japan, 50 (1998), 7193.

[24]

Y. Zhang, G. Deng and K. Kou, Asymptotic behavior of fractional Laplacians in the half space, Appl. Math. Comput., 254 (2015), 125132.

[25]

Y. Zhang, G. Deng and T. Qian, Integral representations of a class of harmonic functions in the half space, J. Differential Equations, 260 (2016), 923936.
