We study stability of the nonnegative solutions of a discontinuous elliptic eigenvalue problem relevant in several applications as for instance in climate modeling. After giving the explicit expresion of the S-shaped bifurcation diagram $\left( \lambda ,{{\left\| {{\mu }_{\lambda }} \right\|}_{\infty }} \right)$ we show the instability of the decreasing part of the bifurcation curve and the stability of the increasing part. This extends to the case of non-smooth nonlinear terms the well known 1971 result by M.G. Crandall and P.H. Rabinowitz concerning differentiable nonlinear terms. We point out that, in general, there is a lacking of uniquenees of solutions for the associated parabolic problem. Nevertheless, for nondegenerate solutions (crossing the discontinuity value of u in a transversal way) the comparison principle and the uniqueness of solutions hold. The instability is obtained trough a linearization process leading to an eigenvalue problem in which a Dirac delta distribution appears as a coefficient of the differential operator. The stability proof uses a suitable change of variables, the continuuity of the bifurcation branch and the comparison principle for nondegenerate solutions of the parabolic problem.
Citation: |
[1] |
D. Arcoya, J. I. Díaz and L. Tello, S-Shaped bifurcation branch in a quasilinear multivalued model arising in Climatology, Journal of Differential Equations, 150 (1998), 215-225.
doi: 10.1006/jdeq.1998.3502.![]() ![]() ![]() |
[2] |
J. Arrieta, A. Rodríguez-Bernal and J. Valero, Dynamics of a reaction--diffusion equation with a discontinuous nonlinearity, International Journal of Bifurcation and Chaos, 16 (2006), 2965-2984.
doi: 10.1142/S0218127406016586.![]() ![]() ![]() |
[3] |
M. Belloni and R. W. Robinett, The infinite well and Dirac delta function potentials as pedagogical, mathematical and physical models in quantum mechanics, Physics Reports, 540 (2014), 25-122.
doi: 10.1016/j.physrep.2014.02.005.![]() ![]() ![]() |
[4] |
S. Bensid and S. M. Bouguima, On a free boundary problem, Nonlinear Anal. T.M.A, 68 (2008), 2328-2348.
doi: 10.1016/j.na.2007.01.047.![]() ![]() ![]() |
[5] |
S. Bensid and S. M. Bouguima, Existence and multiplicity of solutions to elliptic problems with discontinuities and free boundary conditions, Electronic Journal of Differential Equations, 2010 (2010), 1-16.
![]() ![]() |
[6] |
M. Bertsch and M. H. A. Klaver, On positive solutions of −∆u+f(u) = 0 with f discontinuous, J. Math. Anal. Appl., 157 (1991), 417-446.
doi: 10.1016/0022-247X(91)90099-L.![]() ![]() ![]() |
[7] |
H. Brezis, T. Cazenave, Y. Martel and A. Ramiandrisoa, Blow up for ut−∆u = g(u) revisited, Adv. Differential Equations, 1 (1996), 73-90.
![]() ![]() |
[8] |
M. Coti Zelati, A. Huang, I. Kukavica, R. Temam and M. Ziane, The primitive equations of the atmosphere in presence of vapor saturation, Nonlinearity (2015), http://dx.doi.org/10.1088/0951-7715/28/3/625, in press.
![]() |
[9] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal, 8 (1971), 321-340.
doi: 10.1016/0022-1236(71)90015-2.![]() ![]() ![]() |
[10] |
J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries, Pitman, London, 1985.
![]() |
[11] |
J. I. Díaz, Mathematical analysis of some diffusive energy balance climate models, In Mathematics, Climate and Environment (J. Díaz and J. -L. Lions, eds. ) Masson, Paris, 27 (1993), 28-56.
![]() |
[12] |
J. I. Díaz, A. C. Fowler, A. I. Muñoz and E. Schiavi, Mathematical analysis of a model of river channel formation, Pure appl. geophys., 165 (2008), 1663-1682.
![]() |
[13] |
J. I. Diaz and J. Hernández, Global bifurcation and continua of nonegative solutions for a quasilinear elliptic problem, Comptes Rendus Acad. Sci. Paris, 329 (1999), 587-592.
doi: 10.1016/S0764-4442(00)80006-3.![]() ![]() ![]() |
[14] |
J. I. Díaz, J. Hernández and Y. Ilyasov, Stability criteria on flat and compactly supported ground states of some non-Lipschitz autonomous semilinear equations, To appear in Chinese Annals of Mathematics.
![]() |
[15] |
J. I. Díaz, J. Hernandez and L. Tello, On the multiplicity of equilibrium solutions to a nonlinear diffusion equation on a manifold arising in Climatology, Jour. Mathematical Analysis and Applications, 216 (1997), 593-613.
doi: 10.1006/jmaa.1997.5691.![]() ![]() ![]() |
[16] |
J. I. Díaz and G. Hetzer, A Functional Quasilinear Reaction-Diffusion Equation Arising in Climatology, É quations aux dérivées partielles et applications. Articles dédi és à J. -L. Lions, Elsevier, Paris, (1998), 461-480.
![]() |
[17] |
J. I. Díaz, J. A. Langa and J. Valero, On the asymptotic behaviour of solutions of a stochastic energy balance climate model, Physica D, 238 (2009), 880-887.
doi: 10.1016/j.physd.2009.02.010.![]() ![]() ![]() |
[18] |
J. I. Díaz, J. F. Padial and J. M. Rakotoson, On some Bernouilli free boundary type problems for general elliptic operators, Proceedings of the Royal Society of Edimburgh, 137 (2007), 895-911.
doi: 10.1017/S0308210506000370.![]() ![]() ![]() |
[19] |
J. I. Díaz and J. M. Rakotoson, On a nonlocal stationary free boundary problem arising in the confinement of a plasma in a Stellarator geometry, Archive for Rational Mechanics and Analysis, 134 (1996), 53-95.
doi: 10.1007/BF00376255.![]() ![]() ![]() |
[20] |
J. I. Díaz and S. Shmarev, Langragian approach to level sets: Application to a free boundary problem arising in climatology, Archive for Rational Mechanics and Analysis, 194 (2009), 75-103.
doi: 10.1007/s00205-008-0164-y.![]() ![]() ![]() |
[21] |
J. I. Diaz and L. Tello, On a nonlinear parabolic problem on a Riemannian manifold without boundary arising in Climatology, Collectanea Mathematica, 50 (1999), 19-51.
![]() ![]() |
[22] |
I. H. Farina and R. Aris, Transients in distributed chemical reactors, Part 2: Influence of diffusion in the simplified model, Chem. Engng J., 4 (1972), 149-170.
![]() |
[23] |
E. Fereisel, A note on uniqueness for parabolic problems with discontinuous nonlinearities, Nonlinear Analysis, 16 (1991), 1053-1056.
doi: 10.1016/0362-546X(91)90106-B.![]() ![]() ![]() |
[24] |
E. Feireisl and J. Norbury, Some existence, uniqueness and nonuniqueness theorems for solutions of parabolic equations with discontinuous nonlinearities, Proc. Roy. Soc. Edinburgh Sect., 119 (1991), 1-17.
doi: 10.1017/S0308210500028262.![]() ![]() ![]() |
[25] |
B. A. Fleishman and T. J. Mahar, Analytic methods for approximate solution of elliptic free boundary problems, Nonlinear Anal., 1 (1977), 561-569.
doi: 10.1016/0362-546X(77)90017-7.![]() ![]() ![]() |
[26] |
B. A. Fleishman and T. J. Mahar, A step function model in chemical reactor theory: Multiplicity and stability of solutions, Nonl. Anal., 5 (1981), 645-654.
doi: 10.1016/0362-546X(81)90080-8.![]() ![]() ![]() |
[27] |
L. E. Fraenkel and M. S. Berger, A global theory of steady vortex rings in an ideal fluid, Acfa Math., 132 (1974), 13-51.
doi: 10.1007/BF02392107.![]() ![]() ![]() |
[28] |
A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc. , Englewood Cliffs, N. J. , 1964.
![]() |
[29] |
R. Gianni and J. Hulshof, The semilinear heat equation with a Heaviside source term, Euro. J. of Applied Mathematics, 3 (1992), 367-379.
doi: 10.1017/S0956792500000917.![]() ![]() ![]() |
[30] |
A. A. Guetter, A free boundary problem in plasma containment, SIAM J. Appl. Math., 49 (1989), 99-115.
doi: 10.1137/0149006.![]() ![]() ![]() |
[31] |
A. A. Guetter, On solutions of an elliptic boundary value problem with a discontinuous nonlinearity, Nonl. Anal. T.M.A,, 23 (1994), 1413-1425.
doi: 10.1016/0362-546X(94)90136-8.![]() ![]() ![]() |
[32] |
D. Henry, Geometric theory of semilinear parabolic equations in Lecture Notes in Mathematics No. 840, Springer-Verlag, New York, 1981.
![]() |
[33] |
J. Hernandez, F. J. Mancebo and J. M. Vega, On the linearization ofsome singular nonlinear elliptic problems and applications, Ann. Inst. H. Poincaré Anal., 19 (2002), 777-813.
doi: 10.1016/S0294-1449(02)00102-6.![]() ![]() ![]() |
[34] |
G. Hetzer, The structure of the principal component for semilinear diffusion equations from energy balance climate models, Houston Journal of Mathematics, 16 (1990), 203-216.
![]() ![]() |
[35] |
X. Liang, X. Lin and H. Matano, A variational problem associated with the minimal speed of travelling waves for spatially periodic reaction-diffusion equations, Transactions of the American Mathematical Society, 362 (2010), 5605-5633.
doi: 10.1090/S0002-9947-2010-04931-1.![]() ![]() ![]() |
[36] |
H. P. McKean, Nagumo's equation, Advances in Math., 4 (1970), 209-223.
doi: 10.1016/0001-8708(70)90023-X.![]() ![]() ![]() |
[37] |
G. R. North and J. A. Coakley, Differences between seasonal and mean annual energy balance model calculations of climate and climate sensitivity, Journal of the Atmospheric Sciences, 36 (1979), 1189-1203.
doi: 10.1175/1520-0469(1979)036<1189:DBSAMA>2.0.CO;2.![]() ![]() |
[38] |
J. Rauch, Discontinuous semilinear differential equations and multiple valued maps, Proceedings of the American Mathematical Society, 64 (1977), 277-282.
doi: 10.1090/S0002-9939-1977-0442453-6.![]() ![]() ![]() |
[39] |
I. Stakgold, Free boundary problems in climate modeling. In, Mathematics, Climate and Environment, J. I. Díaz, and J. -L. Lions (Edits. ), Research Notes in Applied Mathematics no 27, Masson, Paris, 1993,179-88.
![]() |
[40] |
C. A. Stuart, The number of solutions of boundary value problems with discontinuous non-linearities, Archive for Rational Mechanics and Analysis, 66 (1977), 225-235.
doi: 10.1007/BF00250672.![]() ![]() ![]() |
[41] |
R. Temam, A nonlinear eigenvalue problem: The shape at equilibrium of a confined plasma, Arch. Rational. Mech. Anal, 60 (1975), 51-73.
doi: 10.1007/BF00281469.![]() ![]() ![]() |
[42] |
D. Terman, A free boundary problem arising from a bistable reaction--diffusion equation, SIAM J. Math. Anal., 14 (1983), 1107-1129.
doi: 10.1137/0514086.![]() ![]() ![]() |
[43] |
J. Valero, Attractors of parabolic equations without uniqueness, Journal of Dynamics and Differential Equations, 13 (2001), 711-744.
doi: 10.1023/A:1016642525800.![]() ![]() ![]() |
[44] |
X. Xu, Existence and regularity theorems for a free boundary problem governing a simple climate model, Aplicable Anal., 42 (1991), 33-57.
doi: 10.1080/00036819108840032.![]() ![]() ![]() |
[45] |
K. Yosida, Functional Analysis Springer, 1965.
![]() |