• Previous Article
    Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution
  • DCDS-B Home
  • This Issue
  • Next Article
    Stability results for discontinuous nonlinear elliptic and parabolic problems with a S-shaped bifurcation branch of stationary solutions
July  2017, 22(5): 1779-1800. doi: 10.3934/dcdsb.2017106

Attractors for a random evolution equation with infinite memory: Theoretical results

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla, Spain

2. 

Institut für Mathematik, Institut für Stochastik, Ernst Abbe Platz 2,07737-Jena, Germany

3. 

Universidad Miguel Hernandez de Elche, Centro de Investigación Operativa, Avda. Universidad s/n, 03202-Elche (Alicante), Spain

* Corresponding author

Received  April 2016 Revised  June 2016 Published  March 2017

Fund Project: This work has been partially supported by FEDER and Spanish Ministerio de Economĺa y Competitividad, project MTM2015-63723-P, and by Junta de Andalucĺa under Proyecto de Excelencia P12-FQM-1492.

The long-time behavior of solutions (more precisely, the existence of random pullback attractors) for an integro-differential parabolic equation of diffusion type with memory terms, more particularly with terms containing both finite and infinite delays, as well as some kind of randomness, is analyzed in this paper. We impose general assumptions not ensuring uniqueness of solutions, which implies that the theory of multivalued dynamical system has to be used. Furthermore, the emphasis is put on the existence of random pullback attractors by exploiting the techniques of the theory of multivalued nonautonomous/random dynamical systems.

Citation: Tomás Caraballo, María J. Garrido-Atienza, Björn Schmalfuss, José Valero. Attractors for a random evolution equation with infinite memory: Theoretical results. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1779-1800. doi: 10.3934/dcdsb.2017106
References:
[1]

L. Arnold, Random Dynamical Systems Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.

[2]

T. CaraballoI. D. Chueshov and J. Real, Pullback attractors for stochastic heat equations in materials with memory, Discrete Cont. Dyn. Systems Series B, 9 (2008), 525-539. 

[3]

T. CaraballoM. J. Garrido-Atienza and B. Schmalfuß, Existence of exponentially attracting stationary solutions for delay evolution equations, Discrete Contin. Dyn. Syst., 18 (2007), 271-293.  doi: 10.3934/dcds.2007.18.271.

[4]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuß and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.

[5]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuß and J. Valero, Global attractor for a non-autonomous integro-differential equation in materials with memory, Nonlinear Analysis, 73 (2010), 183-201.  doi: 10.1016/j.na.2010.03.012.

[6]

T. CaraballoP. E. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl Math Optim, 50 (2004), 183-207.  doi: 10.1007/s00245-004-0802-1.

[7]

T. CaraballoJ. A. Langa and J. Valero, Global attractors for multivalued random dynamical systems, Nonlinear Anal., 48 (2002), 805-829.  doi: 10.1016/S0362-546X(00)00216-9.

[8]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, SpringerVerlag, Berlin, 1977.

[9] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9780511666223.
[10]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[11]

M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity SIAM Studies in Applied Mathematics 12, SIAM, Philadelphia, 1992.

[12] H. GajewskyK. Gröger and K. Zacharias, Nichlineare operatorgleichungen und operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974. 
[13]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991.

[14]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. Ⅰ, volume 419 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1997.

[15]

item {ReHrNo87} (MR919738) M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, Longman, Harlow; John Willey, New York, 1987.

[16] J. C. Robinson, Infinite-dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2002.  doi: 10.1007/978-94-010-0732-0.
[17]

B. Schmalfuß, Attractors for the non-autonomous dynamical systems, In International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), pp. 684{689, World Sci. Publishing, River Edge, NJ, 2000.

[18]

R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979.

show all references

References:
[1]

L. Arnold, Random Dynamical Systems Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998.

[2]

T. CaraballoI. D. Chueshov and J. Real, Pullback attractors for stochastic heat equations in materials with memory, Discrete Cont. Dyn. Systems Series B, 9 (2008), 525-539. 

[3]

T. CaraballoM. J. Garrido-Atienza and B. Schmalfuß, Existence of exponentially attracting stationary solutions for delay evolution equations, Discrete Contin. Dyn. Syst., 18 (2007), 271-293.  doi: 10.3934/dcds.2007.18.271.

[4]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuß and J. Valero, Non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.  doi: 10.3934/dcds.2008.21.415.

[5]

T. CaraballoM. J. Garrido-AtienzaB. Schmalfuß and J. Valero, Global attractor for a non-autonomous integro-differential equation in materials with memory, Nonlinear Analysis, 73 (2010), 183-201.  doi: 10.1016/j.na.2010.03.012.

[6]

T. CaraballoP. E. Kloeden and B. Schmalfuß, Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl Math Optim, 50 (2004), 183-207.  doi: 10.1007/s00245-004-0802-1.

[7]

T. CaraballoJ. A. Langa and J. Valero, Global attractors for multivalued random dynamical systems, Nonlinear Anal., 48 (2002), 805-829.  doi: 10.1016/S0362-546X(00)00216-9.

[8]

C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, SpringerVerlag, Berlin, 1977.

[9] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, 1992.  doi: 10.1017/CBO9780511666223.
[10]

C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297-308.  doi: 10.1007/BF00251609.

[11]

M. Fabrizio and A. Morro, Mathematical Problems in Linear Viscoelasticity SIAM Studies in Applied Mathematics 12, SIAM, Philadelphia, 1992.

[12] H. GajewskyK. Gröger and K. Zacharias, Nichlineare operatorgleichungen und operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974. 
[13]

Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay Lecture Notes in Mathematics, 1473, Springer-Verlag, Berlin, 1991.

[14]

S. Hu and N. S. Papageorgiou, Handbook of Multivalued Analysis, Vol. Ⅰ, volume 419 of Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 1997.

[15]

item {ReHrNo87} (MR919738) M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity, Longman, Harlow; John Willey, New York, 1987.

[16] J. C. Robinson, Infinite-dimensional Dynamical Systems, Cambridge University Press, Cambridge, 2002.  doi: 10.1007/978-94-010-0732-0.
[17]

B. Schmalfuß, Attractors for the non-autonomous dynamical systems, In International Conference on Differential Equations, Vol. 1, 2 (Berlin, 1999), pp. 684{689, World Sci. Publishing, River Edge, NJ, 2000.

[18]

R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979.

[1]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1695-1724. doi: 10.3934/dcdsb.2021107

[2]

Xiangnan He, Wenlian Lu, Tianping Chen. On transverse stability of random dynamical system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 701-721. doi: 10.3934/dcds.2013.33.701

[3]

Shulin Wang, Yangrong Li. Probabilistic continuity of a pullback random attractor in time-sample. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2699-2722. doi: 10.3934/dcdsb.2020028

[4]

Junyi Tu, Yuncheng You. Random attractor of stochastic Brusselator system with multiplicative noise. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2757-2779. doi: 10.3934/dcds.2016.36.2757

[5]

Nguyen Dinh Cong, Thai Son Doan, Stefan Siegmund. On Lyapunov exponents of difference equations with random delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (3) : 861-874. doi: 10.3934/dcdsb.2015.20.861

[6]

Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195

[7]

Janusz Mierczyński, Sylvia Novo, Rafael Obaya. Lyapunov exponents and Oseledets decomposition in random dynamical systems generated by systems of delay differential equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2235-2255. doi: 10.3934/cpaa.2020098

[8]

Tomás Caraballo, Stefanie Sonner. Random pullback exponential attractors: General existence results for random dynamical systems in Banach spaces. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6383-6403. doi: 10.3934/dcds.2017277

[9]

Fuke Wu, Peter E. Kloeden. Mean-square random attractors of stochastic delay differential equations with random delay. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1715-1734. doi: 10.3934/dcdsb.2013.18.1715

[10]

Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 167-198. doi: 10.3934/dcdsb.2021036

[11]

Julian Newman. Synchronisation of almost all trajectories of a random dynamical system. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4163-4177. doi: 10.3934/dcds.2020176

[12]

Kening Lu, Alexandra Neamţu, Björn Schmalfuss. On the Oseledets-splitting for infinite-dimensional random dynamical systems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1219-1242. doi: 10.3934/dcdsb.2018149

[13]

Markus Böhm, Björn Schmalfuss. Bounds on the Hausdorff dimension of random attractors for infinite-dimensional random dynamical systems on fractals. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3115-3138. doi: 10.3934/dcdsb.2018303

[14]

Lianfa He, Hongwen Zheng, Yujun Zhu. Shadowing in random dynamical systems. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 355-362. doi: 10.3934/dcds.2005.12.355

[15]

Philippe Marie, Jérôme Rousseau. Recurrence for random dynamical systems. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 1-16. doi: 10.3934/dcds.2011.30.1

[16]

Wenqiang Zhao. Pullback attractors for bi-spatial continuous random dynamical systems and application to stochastic fractional power dissipative equation on an unbounded domain. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3395-3438. doi: 10.3934/dcdsb.2018326

[17]

Tomás Caraballo, M. J. Garrido-Atienza, B. Schmalfuss, José Valero. Non--autonomous and random attractors for delay random semilinear equations without uniqueness. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 415-443. doi: 10.3934/dcds.2008.21.415

[18]

Yuri Kozitsky, Krzysztof Pilorz. Random jumps and coalescence in the continuum: Evolution of states of an infinite particle system. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 725-752. doi: 10.3934/dcds.2020059

[19]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[20]

Yujun Zhu. Preimage entropy for random dynamical systems. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 829-851. doi: 10.3934/dcds.2007.18.829

2021 Impact Factor: 1.497

Metrics

  • PDF downloads (177)
  • HTML views (73)
  • Cited by (3)

[Back to Top]