-
Previous Article
Strong trajectory and global $\mathbf{W^{1,p}}$-attractors for the damped-driven Euler system in $\mathbb R^2$
- DCDS-B Home
- This Issue
-
Next Article
Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution
Asymptotic behaviour of a non-classical and non-autonomous diffusion equation containing some hereditary characteristic
1. | Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160,41080-Sevilla, Spain |
2. | Departamento de Economía, Métodos Cuantitativos e Historia Económica, Universidad Pablo de Olavide, Ctra. de Utrera, Km. 1,41013-Sevilla, Spain |
3. | Instituto de Matemática e Estatística, Universidade Federal Fluminense, Rua Mário Santos Braga s/n, Centro, CEP 24020140 -Niterói, RJ, Brazil |
Our aim in this work is the study of the existence and uniqueness of solutions for a non-classical and non-autonomous diffusion equation containing infinite delay terms. We also analyze the asymptotic behaviour of the system in the pullback sense and, under suitable additional conditions, we obtain global exponential decay of the solutions of the evolutionary problem to stationary solutions.
References:
[1] |
E. C. Aifantis,
On the problem of diffusion in solids, Acta Mech., 37 (1980), 265-296.
doi: 10.1007/BF01202949. |
[2] |
C. T. Anh and T. Q. Bao,
Pullback attractors for a class of non-autonomous nonclassical diffusion equations, Nonlinear Analysis, 73 (2010), 399-412.
doi: 10.1016/j.na.2010.03.031. |
[3] |
F. Balibrea, T. Caraballo, P. E. Kloeden and J. Valero,
Recent developments in dynamical systems: Three perspectives, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2591-2636.
doi: 10.1142/S0218127410027246. |
[4] |
R. Camassa and D. Holm,
An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1665.
doi: 10.1103/PhysRevLett.71.1661. |
[5] |
T. Caraballo, M. J. Garrido-Atienza, B Schmalfußand and J. Valero,
non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.
doi: 10.3934/dcds.2008.21.415. |
[6] |
T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero,
Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Anal, 72 (2010), 1967-1976.
doi: 10.1016/j.na.2009.09.037. |
[7] |
T. Caraballo and A. M. Márquez-Durán,
Existence, uniqueness and asymptotic behavior of solutions for a nonclassical difusion equation with delay, Dynamics of Partial Differential Equations, 10 (2013), 267-281.
doi: 10.4310/DPDE.2013.v10.n3.a3. |
[8] |
T. Caraballo, A. M. Márquez-Durán and F. Rivero,
ell-posedness and asymptotic behaviour for a non-classical and non-autonomous diffusion equation with delay, nternational J. Bifurcation and Chaos, 25 (2015), 1540021, 11pp.
doi: 10.1142/S0218127415400210. |
[9] |
T. Caraballo, A. M. Márquez-Durán and F. Rivero, A Nonclassical and Nonautonomous Diffusion Equation Containing Infinite Delays, Differential and Difference Equations with Applications. ICDDEA 2015. Springer Proceedings in Mathematics & Statistics, vol. 164 (2016) 385-399. |
[10] |
T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero,
Pullback attractors of non-autonomous and stochastic multivalued dynamical systems, Set-Valued Anal., 11 (2003), 153-201.
doi: 10.1023/A:1022902802385. |
[11] |
J. K. Hale, Asymptotic Behavior of Dissipative System American Mathematical Society, 1988. |
[12] |
J. K. Hale and J. Kato,
Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.
|
[13] |
Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay Lecture Notes in Mathematics, 1473, Berlin: Springer-Verlag, 1991. |
[14] |
Z. Hu and Y. Wang,
Pullback attractors for a non-autonomous nonclassical diffusion equation with variable delay, J. Math. Phys., 53 (2012), 072702, 17pp.
doi: 10.1063/1.4736847. |
[15] |
K. Kuttlerand and E. C. Aifantis,
Existence and uniqueness in non classical diffusion, Quarterly of Applied Mathematics, 45 (1987), 549-560.
doi: 10.1090/qam/910461. |
[16] |
K. Kuttlerand and E. C. Aifantis,
Quasilinear evolution equations in nonclassical diffusion, SIAM Journal on Mathematical Analysis, 19 (1988), 110-120.
doi: 10.1137/0519008. |
[17] |
J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[18] |
Q. Ma, Y. Liu and F. Zhang, Global attractors in $H^1(\mathbb R^N)$ for nonclassical diffusion equations, Discrete Dyn. Nat. Soc. 2012, Art. ID 672762, 16 pp. |
[19] |
P. Marín-Rubio, J. Real and J. Valero, Pullback attractors for a 2D-Navier-Stokes model in an infinite delay case, submitted. |
[20] |
V. S. Melnik and J. Valero,
On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111.
doi: 10.1023/A:1008608431399. |
[21] |
J. C. Peter and M. E. Gurtin,
On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627.
|
[22] |
F. Rivero,
Pullback attractor for non-autonomous non-classical parabolic equation, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 209-221.
doi: 10.3934/dcdsb.2013.18.209. |
[23] |
C. Sun, S. Wang and C. Zhong,
Global attractors for a nonclassical diffusion equation, Acta Math. Appl. Sin. Engl., 23 (2007), 1271-1280.
doi: 10.1007/s10114-005-0909-6. |
[24] |
C. Sun and M. Yang,
Dynamics of the nonclassical diffusion equations, Asymptotic Analysis, 59 (2008), 51-81.
|
[25] |
S. Wang, D. Li and Ch. Zhong,
On the dynamics of a class of nonclassical parabolic equations, J. Math. Anal. Appl., 317 (2006), 565-582.
doi: 10.1016/j.jmaa.2005.06.094. |
show all references
References:
[1] |
E. C. Aifantis,
On the problem of diffusion in solids, Acta Mech., 37 (1980), 265-296.
doi: 10.1007/BF01202949. |
[2] |
C. T. Anh and T. Q. Bao,
Pullback attractors for a class of non-autonomous nonclassical diffusion equations, Nonlinear Analysis, 73 (2010), 399-412.
doi: 10.1016/j.na.2010.03.031. |
[3] |
F. Balibrea, T. Caraballo, P. E. Kloeden and J. Valero,
Recent developments in dynamical systems: Three perspectives, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2591-2636.
doi: 10.1142/S0218127410027246. |
[4] |
R. Camassa and D. Holm,
An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1665.
doi: 10.1103/PhysRevLett.71.1661. |
[5] |
T. Caraballo, M. J. Garrido-Atienza, B Schmalfußand and J. Valero,
non-autonomous and random attractors for delay random semilinear equations without uniqueness, Discrete Contin. Dyn. Syst., 21 (2008), 415-443.
doi: 10.3934/dcds.2008.21.415. |
[6] |
T. Caraballo, A. N. Carvalho, J. A. Langa and F. Rivero,
Existence of pullback attractors for pullback asymptotically compact processes, Nonlinear Anal, 72 (2010), 1967-1976.
doi: 10.1016/j.na.2009.09.037. |
[7] |
T. Caraballo and A. M. Márquez-Durán,
Existence, uniqueness and asymptotic behavior of solutions for a nonclassical difusion equation with delay, Dynamics of Partial Differential Equations, 10 (2013), 267-281.
doi: 10.4310/DPDE.2013.v10.n3.a3. |
[8] |
T. Caraballo, A. M. Márquez-Durán and F. Rivero,
ell-posedness and asymptotic behaviour for a non-classical and non-autonomous diffusion equation with delay, nternational J. Bifurcation and Chaos, 25 (2015), 1540021, 11pp.
doi: 10.1142/S0218127415400210. |
[9] |
T. Caraballo, A. M. Márquez-Durán and F. Rivero, A Nonclassical and Nonautonomous Diffusion Equation Containing Infinite Delays, Differential and Difference Equations with Applications. ICDDEA 2015. Springer Proceedings in Mathematics & Statistics, vol. 164 (2016) 385-399. |
[10] |
T. Caraballo, J. A. Langa, V. S. Melnik and J. Valero,
Pullback attractors of non-autonomous and stochastic multivalued dynamical systems, Set-Valued Anal., 11 (2003), 153-201.
doi: 10.1023/A:1022902802385. |
[11] |
J. K. Hale, Asymptotic Behavior of Dissipative System American Mathematical Society, 1988. |
[12] |
J. K. Hale and J. Kato,
Phase space for retarded equations with infinite delay, Funkcial. Ekvac., 21 (1978), 11-41.
|
[13] |
Y. Hino, S. Murakami and T. Naito, Functional Differential Equations with Infinite Delay Lecture Notes in Mathematics, 1473, Berlin: Springer-Verlag, 1991. |
[14] |
Z. Hu and Y. Wang,
Pullback attractors for a non-autonomous nonclassical diffusion equation with variable delay, J. Math. Phys., 53 (2012), 072702, 17pp.
doi: 10.1063/1.4736847. |
[15] |
K. Kuttlerand and E. C. Aifantis,
Existence and uniqueness in non classical diffusion, Quarterly of Applied Mathematics, 45 (1987), 549-560.
doi: 10.1090/qam/910461. |
[16] |
K. Kuttlerand and E. C. Aifantis,
Quasilinear evolution equations in nonclassical diffusion, SIAM Journal on Mathematical Analysis, 19 (1988), 110-120.
doi: 10.1137/0519008. |
[17] |
J. L. Lions, Quelques méthodes de résolution des problémes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969. |
[18] |
Q. Ma, Y. Liu and F. Zhang, Global attractors in $H^1(\mathbb R^N)$ for nonclassical diffusion equations, Discrete Dyn. Nat. Soc. 2012, Art. ID 672762, 16 pp. |
[19] |
P. Marín-Rubio, J. Real and J. Valero, Pullback attractors for a 2D-Navier-Stokes model in an infinite delay case, submitted. |
[20] |
V. S. Melnik and J. Valero,
On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111.
doi: 10.1023/A:1008608431399. |
[21] |
J. C. Peter and M. E. Gurtin,
On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614-627.
|
[22] |
F. Rivero,
Pullback attractor for non-autonomous non-classical parabolic equation, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 209-221.
doi: 10.3934/dcdsb.2013.18.209. |
[23] |
C. Sun, S. Wang and C. Zhong,
Global attractors for a nonclassical diffusion equation, Acta Math. Appl. Sin. Engl., 23 (2007), 1271-1280.
doi: 10.1007/s10114-005-0909-6. |
[24] |
C. Sun and M. Yang,
Dynamics of the nonclassical diffusion equations, Asymptotic Analysis, 59 (2008), 51-81.
|
[25] |
S. Wang, D. Li and Ch. Zhong,
On the dynamics of a class of nonclassical parabolic equations, J. Math. Anal. Appl., 317 (2006), 565-582.
doi: 10.1016/j.jmaa.2005.06.094. |
[1] |
Xiaolei Dong, Yuming Qin. Strong pullback attractors for a nonclassical diffusion equation. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2021313 |
[2] |
Delin Wu and Chengkui Zhong. Estimates on the dimension of an attractor for a nonclassical hyperbolic equation. Electronic Research Announcements, 2006, 12: 63-70. |
[3] |
Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195 |
[4] |
Linfang Liu, Xianlong Fu, Yuncheng You. Pullback attractor in $H^{1}$ for nonautonomous stochastic reaction-diffusion equations on $\mathbb{R}^n$. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3629-3651. doi: 10.3934/dcdsb.2017143 |
[5] |
Arne Ogrowsky, Björn Schmalfuss. Unstable invariant manifolds for a nonautonomous differential equation with nonautonomous unbounded delay. Discrete and Continuous Dynamical Systems - B, 2013, 18 (6) : 1663-1681. doi: 10.3934/dcdsb.2013.18.1663 |
[6] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[7] |
Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343 |
[8] |
Pengyu Chen, Xuping Zhang, Yongxiang Li. A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. Communications on Pure and Applied Analysis, 2018, 17 (5) : 1975-1992. doi: 10.3934/cpaa.2018094 |
[9] |
Nguyen Huy Tuan, Mokhtar Kirane, Long Dinh Le, Van Thinh Nguyen. On an inverse problem for fractional evolution equation. Evolution Equations and Control Theory, 2017, 6 (1) : 111-134. doi: 10.3934/eect.2017007 |
[10] |
Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717 |
[11] |
Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete and Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194 |
[12] |
Genni Fragnelli, A. Idrissi, L. Maniar. The asymptotic behavior of a population equation with diffusion and delayed birth process. Discrete and Continuous Dynamical Systems - B, 2007, 7 (4) : 735-754. doi: 10.3934/dcdsb.2007.7.735 |
[13] |
Arnaud Debussche, Sylvain De Moor, Julien Vovelle. Diffusion limit for the radiative transfer equation perturbed by a Wiener process. Kinetic and Related Models, 2015, 8 (3) : 467-492. doi: 10.3934/krm.2015.8.467 |
[14] |
Viorel Barbu, Gabriela Marinoschi. An identification problem for a linear evolution equation in a banach space. Discrete and Continuous Dynamical Systems - S, 2020, 13 (5) : 1429-1440. doi: 10.3934/dcdss.2020081 |
[15] |
Saugata Bandyopadhyay, Bernard Dacorogna, Olivier Kneuss. The Pullback equation for degenerate forms. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 657-691. doi: 10.3934/dcds.2010.27.657 |
[16] |
Nick Bessonov, Gennady Bocharov, Tarik Mohammed Touaoula, Sergei Trofimchuk, Vitaly Volpert. Delay reaction-diffusion equation for infection dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2073-2091. doi: 10.3934/dcdsb.2019085 |
[17] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5465-5494. doi: 10.3934/dcdsb.2020354 |
[18] |
Yangrong Li, Lianbing She, Jinyan Yin. Longtime robustness and semi-uniform compactness of a pullback attractor via nonautonomous PDE. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1535-1557. doi: 10.3934/dcdsb.2018058 |
[19] |
Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074 |
[20] |
Suping Wang, Qiaozhen Ma. Existence of pullback attractors for the non-autonomous suspension bridge equation with time delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1299-1316. doi: 10.3934/dcdsb.2019221 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]