[1]

E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent paramaters, SIAM J. Math. Anal., 33 (2002), 11441165.

[2]

A. A. Canabarro, I. M. Gleria and M. L. Lyra, Periodic solutions and chaos in a nonlinear model for the delayed cellular immune response, Physica A, 342 (2004), 234241.

[3]

S. Chen, C. Cheng and Y. Takeuchi, Stability analysis in delayed withinhost viral dynamics with both viral and cellular infections, J. Math. Anal. Appl., 442 (2016), 642672.

[4]

R. V. Culshaw and S. Ruan, A delaydifferential equation model of HIV infection of CD4+Tcell, Math. Biosci., 165 (2000), 2739.

[5]

R. Culshaw, S. Ruan and G. Webb, A mathematical model of celltocell HIV1 that include a time delay, J. Math. Biol., 46 (2003), 425444.

[6]

D. Ebert, C. D. Z. Rohringer and H. J. Carius, Dose effects and densitydependent regulation of two microparasites of Daphnia magna, Oecologia, 122 (2000), 200209.

[7]

H. W. Hethcote, M. A. Lewis and P. Driessche, An epidemiological model with a delay and a nonlinear incidence rate, J. Math. Biol., 27 (1989), 4964.

[8]

G. Huang, W. Ma and Y. Takeuchi, Global properties for virus dynamics model with BeddingtonDeAngelis functional response, Appl. Math. Lett., 22 (2009), 16901693.

[9]

G. Huang, H. Yokoi, Y. Takeuchi, T. Kajiwara and T. Sasaki, Impact of intracellular delay, immune activation delay and nonlinear incidence on viral dynamics, Japan J. Indust. Appl. Math., 28 (2011), 383411.

[10]

R. A. Koup, J. T. Safrit, Y. Cao, C. A. Andrews, G. McLeod, W. Borkowsky, C. Farthing and D. D. Ho, Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome, J. Virol., 68 (1994), 46504655.

[11]

Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Mathematics in Science and Engineering, 191, Academic Press, Inc. , Boston, MA, 1993.

[12]

M. Y. Li and H. Shu, Global dynamics of a mathematical model for HTLV1 infection of CD4+T cells with delayed CTL response, Nonlinear Anal.: RWA., 13 (2012), 10801092.

[13]

Z. Ma, Y. Zhou, W. Wang and Z. Jin, Mathematical Models and Dynamics of Infectious Diseases, China Science Press, Beijing, 2004.

[14]

M. A. Nowak and C. R. M. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996), 7479.

[15]

P. W. Nelson and A. Perelson, Mathematical analysis of a delaydifferential equation model of HIV1 infection, Math. Biosci., 179 (2002), 7394.

[16]

R. Ouifki and G. Witten, Stability analysis of a model for HIV infection with RTI and three intracellular delays, Biosys., 95 (2009), 16.

[17]

K. A. Pawelek, S. Liu, F. Pahlevani and L. Rong, A model of HIV1 infection with two time delays: Mathematical analysis and comparison with patient data, Math. Biosci., 235 (2012), 98109.

[18]

R. R. Regoes, D. Ebert and S. Bonhoeffer, Dosedependent infection rates of parasites produce the Allee effect in epidemiology, Proc. R. Soc. Lond. Ser. B., 269 (2002), 271279.

[19]

H. Shu, L. Wang and J. Watmough, Global stability of a nonlinear viral infection model with in infinitely distributed intracellular delays and CTL immune response, SIAM J. Appl. Math., 73 (2013), 12801302.

[20]

X. Song and A. U. Neumann, Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl., 329 (2007), 281297.

[21]

X. Song, X. Zhou and X. Zhao, Properties of stability and Hopf bifurcation for a HIV infection model with time delay, Appl. Math. Modelling, 34 (2010), 15111523.

[22]

M. Stafford, L. Corey, Y. Cao, E. Daar, D. Ho and A. Perelson, Modelling plasma virus concentration during primary HIV infection, J. Theor. Biol., 203 (2000), 285301.

[23]

X. Tian and Rui. Xu, Global stability ang Hopf bifurcation of an HIV1 infection model with saturation incidence and delayed CTL immune response, Appl. Math. Comput., 237 (2014), 146154.

[24]

X. Wang, A. Elaiw and X. Song, Global properties of a delayed HIV infection model with CTL immune response, Appl. Math. Comput., 218 (2012), 94059414.

[25]

K. Wang, W. Wang, H. Pang and X. Liu, Complex dynamic behavior in a viral model with delayed immune response, Physica D, 226 (2007), 197208.

[26]

Y. Wang, Y. Zhou, F. Brauer and J. M. Heffernan, Viral dynamics model with CTL immune response incorporating antiretroviral therapy, J. Math. Biol., 67 (2013), 901934.

[27]

D. Wodarz, Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses, J. Gen. Virol., 84 (2003), 17431750.

[28]

R. Xu, Global stability of an HIV1 infection model with saturation infection and intracellular delay, J. Math. Anal. Appl., 375 (2011), 7581.

[29]

Y. Yang, L. Zou and S. Ruan, Global dynamics of a delayed withinhost viral infection model with both virustocell and celltocell transmissions, Math. Biosci., 270 (2015), 183191.

[30]

X. Zhou, X. Song and X. Shi, A differential equation model of HIV infection of CD4+ Tcells with cure rate, J. Math. Anal. Appl., 342 (2008), 13421355.

[31]

H. Zhu, Y. Luo and M. Chen, Stability and Hopf bifurcation of a HIV infection model with CTLresponse delay, Comput. Math. Appl., 62 (2011), 30913102.

[32]

H. Zhu and X. Zou, Impact of delays in cell infection and virus production on HIV1 dynamics, Math. Med. Biol., 25 (2008), 99112.
