[1]
|
M. Barton-Smith, Invariant measure for the stochastic Ginzburg-Landau equation, NoDEA Nonlinear Differential Equations Appl., 11 (2004), 29-52.
|
[2]
|
M. Bartuccelli, P. Constantin, C. R. Doering, J. D. Gibbon and M. Gisselfält, On the possibility of soft and hard turbulence in the complex Ginzburg-Landau equation, Phys. D, 44 (1990), 421-444.
|
[3]
|
J. Bourgain, Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys., 176 (1996), 421-445.
|
[4]
|
P. Bechouche and A. Jüngel, Inviscid limits of the complex Ginzburg-Landau equation, Comm. Math. Phys., 214 (2000), 201-226.
|
[5]
|
F. Cacciafesta and A.-S. de Suzzoni, Invariant measure for the Schrödinger equation on the real line, J. Funct. Anal., 269 (2015), 271-324.
|
[6]
|
T. Caraballo, P. E. Kloeden and J. Real, Invariant measures and statistical solutions of the globally modified Navier-Stokes equations, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 761-781.
|
[7]
|
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. xiv+323 pp.
|
[8]
|
M. D. Chekroun and N. E. Glatt-Holtz, Invariant measure for dissipative dynamical systems: Abstract results and applications, Commun. Math. Phys., 316 (2012), 723-761.
|
[9]
|
C. R. Doering, J. D. Gibbon and C. D. Levermore, Weak and strong solutions of the complex Ginzburg-Landau equation, Phys. D, 71 (1994), 285-318.
|
[10]
|
J. Q. Duan and P. Holmes, On the Cauchy problem of a generalized Ginzburg-Landau equation, Nonlinear Anal., 22 (1994), 1033-1040.
|
[11]
|
J. Q. Duan, P. Holmes and E. S. Titi, Global existence theory for a generalized GinzburgLandau equation, Nonlinearity, 5 (1992), 1303-1314.
|
[12]
|
G. Fibich, Self-focusing in the damped nonlinear Schrödinger equation, SIAM J. Appl. Math., 61 (2001), 1680-1705.
|
[13]
|
C. Foias, O. P. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence, Cambridge University Press, 2001.
|
[14]
|
T. Funaki and T. Nishikawa, Large deviations for the Ginzburg-Landau $\nabla \phi $ interface model, Probab. Theory Related Fields, 120 (2001), 535-568.
|
[15]
|
J. M. Ghidaglia, Finite-dimensional behavior for weakly damped driven Schrödinger equations, Ann. Inst. Henri Poincaré Anal. Non Linéaire, 5 (1988), 365-405.
|
[16]
|
B. L. Guo and H. J. Gao, Finite dimensional behavior of generalized Ginzburg-Landau equation (in Chinese), Progress in Natural Sciences, 4 (1994), 423-434.
|
[17]
|
B. L. Guo and Y. Q. Han, Attractors of derivative complex Ginzburg-Landau equation in unbounded domains, Front. Math. China, 2 (2007), 383-416.
|
[18]
|
N. Hayashi, K. Nakamita and M. Tsutsumi, On solution of the initial value problem for the nonlinear Schrödinger equations, J. Funct. Anal., 71 (1987), 218-245.
|
[19]
|
N. Hayashi and M. Tsutsumi, L∞($\mathbb{R}^N$)-decay of classical solution of nonlinear Schrödinger equations, Proc. Roy. Soc. Edinburgh, A, 104 (1986), 309-327.
|
[20]
|
N. I. Karachalios and N. M. Stavrakakis, Global attractor for the weakly damped driven Schrödinger equation in H2(Ω), NoDEA Nonlinear Differential Equations Appl., 9 (2002), 347-360.
|
[21]
|
T. Kato, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys, Théor., 46 (1987), 113-129.
|
[22]
|
G. R. Kent, A Riesz representation theorem, Proc. Amer. Math. Soc., 24 (1970), 629-636.
|
[23]
|
J. U. Kim, Invariant measures for a stochastic nonlinear Schrödinger equation, Indiana Univ. Math. J., 55 (2006), 687-717.
|
[24]
|
J. L. Lebowitz, H. A. Rose and E. R. Speer, Statistical mechanics of the nonlinear Schrödinger equations, J. Stat. Phys., 50 (1988), 657-687.
|
[25]
|
F. Li and B. you, Global attractors for the complex Ginzburg-Landau equation, J. Math. Anal. Appl., 415 (2014), 14-24.
|
[26]
|
G. Łukaszewicz, J. Real and J. C. Robinson, Invariant measures for dissipative systems and generalized banach limits, J. Dynam. Differential Equations, 23 (2011), 225-250.
|
[27]
|
G. Łukaszewicz and J. C. Robinson, Invariant measures for non autonomous dissipative systems, Discrete Contin. Dyn. Syst., 34 (2014), 4211-4222.
|
[28]
|
N. Okazawa and T. Yokota, Monotonicity method applied to the complex Ginzburg-Landau and related equations, J. Math. Anal. Appl., 267 (2002), 247-263.
|
[29]
|
E. Pereira, Relaxation to stationary nonequilibrium states in stochastic Ginzburg-Landau models, Lett. Math. Phys., 64 (2003), 129-135.
|
[30]
|
X. K. Pu and B. L. Guo, Momentum estimates and ergodicity for the 3D stochastic cubic Ginzburg-Landau equation with degenerate noise, J. Differential Equations, 251 (2011), 1747-1777.
|
[31]
|
L. E. Reichl, A Modern Course in Statistical Physics, John Wiley & Sons, Inc, New York, 1998. xx+822 pp.
|
[32]
|
J. C. Robinson, Infinite-Dimensional Dynamical Systems, An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge University Press, Cambridge, 2001. xviii+461 pp.
|
[33]
|
J. Rougemont, Space-time invariant measures, entropy, and dimension for stochastic Ginzburg-Landau equations, Comm. Math. Phys., 225 (2002), 423-448.
|
[34]
|
W. Rudin, Real and Complex Analysis, McGraw-Hill Book Co. , New York-Toronto, Ont. -London 1966. xi+412 pp.
|
[35]
|
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, SpringerVerlag, New York, 1997. xxii+648 pp.
|
[36]
|
M. Tsutsumi and N. Hayashi, Classical solution of nonlinear Schrödinger equations in higher dimensions, Math. Z., 177 (1981), 217-234.
|
[37]
|
N. Tzvetkov, Invariant measures for the defocusing nonlinear Schrödinger equation, Ann. Inst. Fourier (Grenoble), 58 (2008), 2543-2604.
|
[38]
|
N. Tzvetkov, Invariant measures for the nonlinear Schrödinger equation on the disc, Dyn. Partial Differ. Equ., 3 (2006), 111-160.
|
[39]
|
B. X. Wang, The limit behavior of solutions for the Cauchy problem of the complex GinzburgLandau equation, Comm. Pure Appl. Math., 55 (2002), 481-508.
|
[40]
|
L. H. Xu, Ergodicity of the stochastic real Ginzburg-Landau equation driven by α-stable noises, Stochastic Process. Appl., 123 (2013), 3710-3736.
|
[41]
|
P. E. Zhidkov, On an infinite sequence of invariant measures for the cubic nonlinear Schrödinger equation, Int. J. Math. Math. Sci., 28 (2001), 375-394.
|