-
Previous Article
Nonsmooth frameworks for an extended Budyko model
- DCDS-B Home
- This Issue
-
Next Article
Limit cycle bifurcations for piecewise smooth integrable differential systems
Invariant measures for complex-valued dissipative dynamical systems and applications
1. | School of Mathematical and Statistics, Lanzhou University, Lanzhou, Gansu, China |
2. | Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA |
In this work, we extend the classical real-valued framework to deal with complex-valued dissipative dynamical systems. With our new complex-valued framework and using generalized complex Banach limits, we construct invariant measures for continuous complex semigroups possessing global attractors. In particular, for any given complex Banach limit and initial data $u_{0}$, we construct a unique complex invariant measure $\mu$ on a metric space which is acted by a continuous semigroup $\{S(t)\}_{t\geq 0}$ possessing a global attractor $\mathcal{A}$. Moreover, it is shown that the support of $\mu$ is not only contained in global attractor $\mathcal{A}$ but also in $\omega(u_{0})$. Next, the structure of the measure $\mu$ is studied. It is shown that both the real and imaginary parts of a complex invariant measure are invariant signed measures and that both the positive and negative variations of a signed measure are invariant measures. Finally, we illustrate the main results of this article on the model examples of a complex Ginzburg-Landau equation and a nonlinear Schrödinger equation and construct complex invariant measures for these two complex-valued equations.
References:
show all references
References:
[1] |
Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825 |
[2] |
Simão Correia, Mário Figueira. A generalized complex Ginzburg-Landau equation: Global existence and stability results. Communications on Pure and Applied Analysis, 2021, 20 (5) : 2021-2038. doi: 10.3934/cpaa.2021056 |
[3] |
Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871 |
[4] |
Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311 |
[5] |
Gan Lu, Weiming Liu. Multiple complex-valued solutions for the nonlinear Schrödinger equations involving magnetic potentials. Communications on Pure and Applied Analysis, 2017, 16 (6) : 1957-1975. doi: 10.3934/cpaa.2017096 |
[6] |
Hongzi Cong, Jianjun Liu, Xiaoping Yuan. Quasi-periodic solutions for complex Ginzburg-Landau equation of nonlinearity $|u|^{2p}u$. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 579-600. doi: 10.3934/dcdss.2010.3.579 |
[7] |
Michael Stich, Carsten Beta. Standing waves in a complex Ginzburg-Landau equation with time-delay feedback. Conference Publications, 2011, 2011 (Special) : 1329-1334. doi: 10.3934/proc.2011.2011.1329 |
[8] |
N. I. Karachalios, Hector E. Nistazakis, Athanasios N. Yannacopoulos. Asymptotic behavior of solutions of complex discrete evolution equations: The discrete Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2007, 19 (4) : 711-736. doi: 10.3934/dcds.2007.19.711 |
[9] |
Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation. Kinetic and Related Models, 2014, 7 (1) : 57-77. doi: 10.3934/krm.2014.7.57 |
[10] |
Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2539-2564. doi: 10.3934/dcds.2017109 |
[11] |
Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129 |
[12] |
Feng Zhou, Chunyou Sun. Dynamics for the complex Ginzburg-Landau equation on non-cylindrical domains I: The diffeomorphism case. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3767-3792. doi: 10.3934/dcdsb.2016120 |
[13] |
Bo You, Yanren Hou, Fang Li, Jinping Jiang. Pullback attractors for the non-autonomous quasi-linear complex Ginzburg-Landau equation with $p$-Laplacian. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1801-1814. doi: 10.3934/dcdsb.2014.19.1801 |
[14] |
Jerry L. Bona, Stéphane Vento, Fred B. Weissler. Singularity formation and blowup of complex-valued solutions of the modified KdV equation. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4811-4840. doi: 10.3934/dcds.2013.33.4811 |
[15] |
Jungho Park. Bifurcation and stability of the generalized complex Ginzburg--Landau equation. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1237-1253. doi: 10.3934/cpaa.2008.7.1237 |
[16] |
Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280 |
[17] |
N. I. Karachalios, H. E. Nistazakis, A. N. Yannacopoulos. Remarks on the asymptotic behavior of solutions of complex discrete Ginzburg-Landau equations. Conference Publications, 2005, 2005 (Special) : 476-486. doi: 10.3934/proc.2005.2005.476 |
[18] |
Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754 |
[19] |
Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060 |
[20] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]