[1]

L. Arnold, W. Horsthemke and J. Stucki, The influence of external real and white noise on the LotkaVolterra model, J. Biomedical, 21 (1979), 451471.

[2]

J. Artalejo, A. Economou and M. LopezHerrero, The stochastic SEIR model before extinction: Computational approaches, Appl. Math. Comput., 265 (2015), 10261043.

[3]

Z. Bai and Y. Zhou, Existence of two periodic solutions for a nonautonomous SIR epidemic model, Appl. Math. Model., 35 (2011), 382391.

[4]

E. Beretta and V. Capasso, Global stability results for a multigroup SIR epidemic model, Mathematical Ecology, World Scientific, Teaneck, NJ, (1988), 317342.

[5]

R. Durrett, Stochastic Calculus, CRC Press, 1996.

[6]

Z. Feng, W. Huang and C. C. Castillo, Global behavior of a multigroup SIS epidemic model with age structure, J. Diff. Equ., 218 (2005), 292324.

[7]

R. Z. Has'minskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Alphen aan den Rijn, The Netherlands, 1980.

[8]

W. Huang, K. L. Cooke and C. C. Castillo, Stability and bifurcation for a multiplegroup model for the dynamics of HIV/AIDS transmission, SIAM J. Appl. Math., 52 (1992), 835854.

[9]

L. Imhof and S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Diff. Equ., 217 (2005), 2653.

[10]

C. Ji, D. Jiang, Q. Yang and N. Shi, Dynamics of a multigroup SIR epidemic model with stochastic perturbation, Automatica, 48 (2012), 121131.

[11]

D. Jiang, J. Yu, C. Ji and N. Shi, Asymptotic behavior of global positive solution to a stochastic SIR model, Math. Comput. Model., 54 (2011), 221232.

[12]

L. Jódar, R. J. Villanueva and A. Arenas, Modeling the spread of seasonal epidemiological diseases: theory and applications, Math. Comput. Model., 48 (2008), 548557.

[13]

R. Khasminskii, Stochastic Stability of Differential Equations, 2^{nd} edition, SpringerVerlag, Berlin, Heidelberg, 2012.

[14]

C. Koide and H. Seno, Sex ratio features of twogroup SIR model for asymmetric transmission of heterosexual disease, Math. Comput. Model., 23 (1996), 6791.

[15]

A. Lahrouz and A. Settati, Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation, Appl. Math. Comput., 233 (2014), 1019.

[16]

A. Lahrouz, L. Omari, D. Kiouach and A. Belmaâti, Complete global stability for an SIRS epidemic model with generalized nonlinear incidence and vaccination, Appl. Math. Comput., 218 (2012), 65196525.

[17]

D. Li and D. Xu, Periodic solutions of stochastic delay differential equations and applications to Logistic equation and neural networks, J. Korean Math. Soc., 50 (2013), 11651181.

[18]

M. Y. Li, Z. Shuai and C. Wang, Global stability of multigroup epidemic models with distributed delays, J. Math. Anal. Appl., 361 (2010), 3847.

[19]

Y. Lin, D. Jiang and S. Wang, Stationary distribution of a stochastic SIS epidemic model with vaccination, Physica A, 394 (2014), 187197.

[20]

Y. Lin, D. Jiang and T. Liu, Nontrivial periodic solution of a stochastic epidemic model with seasonal variation, Appl. Math. Lett., 45 (2015), 103107.

[21]

Q. Liu and Q. Chen, Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence, Physica A, 428 (2015), 140153.

[22]

Q. Liu, D. Jiang, N. Shi, T. Hayat and A. Alsaedi, Nontrivial periodic solution of a stochastic nonautonomous SISV epidemic model, Physica A, 462 (2016), 837845.

[23]

Z. Liu, Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates, Nonlinear Anal. Real World Appl., 14 (2013), 12861299.

[24]

X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, Chichester, 2008.

[25]

P. Witbooi, Stability of an SEIR epidemic model with independent stochastic perturbations, Physica A, 392 (2013), 49284936.

[26]

Q. Yang, D. Jiang, N. Shi and C. Ji, The ergodicity and extinction of stochastically perturbed SIR and SEIR epidemic models with saturated incidence, J. Math. Anal. Appl., 388 (2012), 248271.

[27]

Q. Yang and X. Mao, Extinction and recurrence of multigroup SEIR epidemic models with stochastic perturbations, Nonlinear Anal. Real World Appl., 14 (2013), 14341456.

[28]

C. Yuan, D. Jiang, D. O'Regan and R. Agarwal, Stochastically asymptotically stability of the multigroup SEIR and SIR models with random perturbation, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 25012516.

[29]

Y. Zhao and D. Jiang, The asymptotic behavior and ergodicity of stochastically perturbed SVIR epidemic model, Int. J. Biomath., 9 (2016), 1650042 (14 pages).

[30]

Y. Zhao and D. Jiang, The threshold of a stochastic SIS epidemic model with vaccination, Appl. Math. Comput., 243 (2014), 718727.

[31]

Y. Zhou, W. Zhang and S. Yuan, Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput., 244 (2014), 118131.

[32]

C. Zhu and G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM J. Control Optim., 46 (2007), 11551179.
