We consider the no-flux initial-boundary value problem for Keller-Segel-type chemotaxis growth systems of the form
in a ball
By means of an argument based on a conditional quasi-energy inequality, it is firstly shown that if
with some
Secondly, turning a focus on possible effects of large chemotactic sensitivities, on the basis of the above it is shown that when
$\begin{eqnarray*} u_χ(x, t) > L. \end{eqnarray*}$
Citation: |
[1] |
M. Aida, K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Chemotaxis and growth system with singular sensitivity function, Nonlinear Anal Real World Appl., 6 (2005), 323-336.
doi: 10.1016/j.nonrwa.2004.08.011.![]() ![]() ![]() |
[2] |
M. Aida, T. Tsujikawa, M. Efendiev, A. Yagi and M. Mimura, Lower estimate of the attractor dimension for a chemotaxis growth system, J. London Math. Soc., 74 (2006), 453-474.
doi: 10.1112/S0024610706023015.![]() ![]() ![]() |
[3] |
N. Bellomo, A. Bellouquid, Y. Tao and M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663-1763.
doi: 10.1142/S021820251550044X.![]() ![]() ![]() |
[4] |
M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: The role of the urokinase plasminogen activation system, Math. Mod. Meth. Appl. Sci., 15 (2005), 1685-1734.
doi: 10.1142/S0218202505000947.![]() ![]() ![]() |
[5] |
H. J. Eberl, D. F. Parker and M. C. M. van Loosdrecht, A new deterministic spatio-temporal continuum model for biofilm development, J. Theor. Med., 3 (2001), 161-175.
![]() |
[6] |
M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scu. Norm. Super. Pisa Cl. Sci., 24 (1997), 663-683.
![]() ![]() |
[7] |
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3.![]() ![]() ![]() |
[8] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jahresberichte DMV, 105 (2003), 103-165.
![]() ![]() |
[9] |
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Eq., 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022.![]() ![]() ![]() |
[10] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.
![]() |
[11] |
K. Kuto, K. Osaki, T. Sakurai and T. Tsujikawa, Spatial pattern formation in a chemotaxis-diffusion-growth model, Physica D, 241 (2012), 1629-1639.
doi: 10.1016/j.physd.2012.06.009.![]() ![]() ![]() |
[12] |
J. Lankeit, Chemotaxis can prevent thresholds on population density, Discr. Cont. Dyn. Syst. B, 20 (2015), 1499-1527.
doi: 10.3934/dcdsb.2015.20.1499.![]() ![]() ![]() |
[13] |
J. Lankeit, Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source, J. Differential Eq., 258 (2015), 1158-1191.
doi: 10.1016/j.jde.2014.10.016.![]() ![]() ![]() |
[14] |
G. Meral, C. Stinner and C. Surulescu, On a multiscale model involving cell contractivity and its effects on tumor invasion, Discr. Cont. Dyn. Syst. B, 20 (2015), 189-213.
doi: 10.3934/dcdsb.2015.20.189.![]() ![]() ![]() |
[15] |
T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj, Ser. Int., 40 (1997), 411-433.
![]() ![]() |
[16] |
E. Nakaguchi and M. Efendiev, On a new dimension estimate of the global attractor for chemotaxis-growth systems, Osaka J. Math., 45 (2008), 273-281.
![]() ![]() |
[17] |
K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Analysis, 51 (2002), 119-144.
doi: 10.1016/S0362-546X(01)00815-X.![]() ![]() ![]() |
[18] |
K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcialaj Ekvacioj, 44 (2001), 441-469.
![]() ![]() |
[19] |
K. J. Painter and T. Hillen, Spatio-temporal chaos in a chemotaxis model, Physica D, 240 (2011), 363-375.
![]() |
[20] |
K. J. Painter, P. K. Maini and H. G. Othmer, Complex spatial patterns in a hybrid chemotaxis reaction-diffusion model, J. Math. Biol., 41 (2000), 285-314.
![]() |
[21] |
C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM J. Math. Anal., 46 (2014), 1969-2007.
doi: 10.1137/13094058X.![]() ![]() ![]() |
[22] |
Z. Szymańska, C. Morales Rodrigo, M. Lachowicz and M. A. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions, Math. Mod. Meth. Appl. Sci., 19 (2009), 257-281.
doi: 10.1142/S0218202509003425.![]() ![]() ![]() |
[23] |
J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Part. Differential Eq., 32 (2007), 849-877.
doi: 10.1080/03605300701319003.![]() ![]() ![]() |
[24] |
Y. Tao and M. Winkler, Persistence of mass in a chemotaxis system with logistic source, J. Differential Eq., 259 (2015), 6142-6161.
doi: 10.1016/j.jde.2015.07.019.![]() ![]() ![]() |
[25] |
M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Part. Differential Eq., 35 (2010), 1516-1537.
doi: 10.1080/03605300903473426.![]() ![]() ![]() |
[26] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767, arXiv: 1112.4156v1
doi: 10.1016/j.matpur.2013.01.020.![]() ![]() ![]() |
[27] |
M. Winkler, Global asymptotic stability of constant equilibria in a fully parabolic chemotaxis system with strong logistic dampening, J. Differential Eq., 257 (2014), 1056-1077.
doi: 10.1016/j.jde.2014.04.023.![]() ![]() ![]() |
[28] |
M. Winkler, How far can chemotactic cross-diffusion enforce exceeding carrying capacities?, J. Nonlinear Sci., 24 (2014), 809-855.
doi: 10.1007/s00332-014-9205-x.![]() ![]() ![]() |