November  2017, 22(9): 3259-3272. doi: 10.3934/dcdsb.2017136

Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones

1. 

Departamento de Matemática, ICMC-Universidade de Sãao Paulo, Avenida Trabalhador Sãao-carlense, 400, Sãao Carlos, SP, 13566-590, Brazil

2. 

Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain

3. 

Departamento de Física, Química e Matemática, UFSCar, Sorocaba, SP, 18052-780, Brazil

Received  August 2016 Revised  March 2017 Published  April 2017

We apply the averaging theory of first order for discontinuous differential systems to study the bifurcation of limit cycles from the periodic orbits of the uniform isochronous center of the differential systems $\dot{x}=-y+x^2, \;\dot{y}=x+xy$, and $\dot{x}=-y+x^2y, \;\dot{y}=x+xy^2$, when they are perturbed inside the class of all discontinuous quadratic and cubic polynomials differential systems with four zones separately by the axes of coordinates, respectively.

Using averaging theory of first order the maximum number of limit cycles that we can obtain is twice the maximum number of limit cycles obtained in a previous work for discontinuous quadratic differential systems perturbing the same uniform isochronous quadratic center at origin perturbed with two zones separately by a straight line, and 5 more limit cycles than those achieved in a prior result for discontinuous cubic differential systems with the same uniform isochronous cubic center at the origin perturbed with two zones separately by a straight line. Comparing our results with those obtained perturbing the mentioned centers by the continuous quadratic and cubic differential systems we obtain 8 and 9 more limit cycles respectively.

Citation: Jackson Itikawa, Jaume Llibre, Ana Cristina Mereu, Regilene Oliveira. Limit cycles in uniform isochronous centers of discontinuous differential systems with four zones. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3259-3272. doi: 10.3934/dcdsb.2017136
References:
[1]

A. Algaba and M. Reyes, Computing center conditions for vector fields with constant angular speed, J. Comput. Appl. Math., 154 (2003), 143-159.  doi: 10.1016/S0377-0427(02)00818-X.

[2]

A. Algaba, M. Reyes, T. Ortega and A. Bravo, Campos cuárticos con velocidad angular constante, in Actas : XVI CEDYA Congreso de Ecuaciones Diferenciales y Aplicaciones, VI CMA Congreso de Matemática Aplicada, Las Palmas de Gran Canaria, 2 (1999), 1341-1348.

[3]

A. AlgabaM. Reyes and A. Bravo, Geometry of the uniformly isochronous centers with polynomial commutator, Differential Equations Dynam. Systems, 10 (2002), 257-275. 

[4]

N. N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or center type, American Math. Soc. Translation 1954 (1954), 19pp.

[5]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications Appl. Math. Sci. , 163 Spring-Verlag, London, 2008.

[6]

A. Buicǎ and J. Llibre, Averaging methods for finding periodic orbits via Brower degree, Bull. Sci. Math., 128 (2004), 7-22. 

[7]

J. ChavarrigaI.A. García and J. Giné, On the integrability of the differential equations defined by the sum of homogeneous vector fields with degenerate infinity, Int. J. of Bif. and Chaos, 11 (2001), 711-722.  doi: 10.1142/S0218127401002390.

[8]

J. ChavarrigaJ. Giné and I.A. García, Isochronous centers of cubic systems with degenerate infinity, Diff. Eq. Dyn. Sys., 7 (1999), 221-238. 

[9]

J. Chavarriga and M. Sabatini, A survey of isochronous centers, Qualitative Theory of Dynamical Systems, 1 (1999), 1-70.  doi: 10.1007/BF02969404.

[10]

C. Chicone and M. Jacobs, Bifurcation of limit cycles from quadratic isochrones, J. Differential Equations, 91 (1991), 268-326.  doi: 10.1016/0022-0396(91)90142-V.

[11]

C. Christopher and C. Li, Limit Cycles of Differential Equations, Birkhäuser, Boston, 2007.

[12]

A.G. Choudhury and P. Guha, On commuting vector fields and Darboux functions for planar differential equations, Lobachevskii J. Math., 34 (2013), 212-226.  doi: 10.1134/S1995080213030049.

[13]

B. CollA. Gasull and R. Prohens, Bifurcation of limit cycles from two families of centers, Dyn. Contin. Discrete Impuls. Syst., 12 (2005), 275-287. 

[14]

C.B. Collins, Conditions for a center in a simple class of cubic systems, Differential and Integral Equations, 10 (1997), 333-356. 

[15]

R. Conti, Uniformly isochronous centers of polynomial systems in $\mathbb{R}^2$, Lecture Notes in Pure and Appl. Math., 152 (1994), 21-31. 

[16]

R. Conti, Centers of planar polynomial systems. A review, Le Matematiche, 53 (1998), 207-240. 

[17]

J. DevlinN.G. Lloyd and J.M. Pearson, Cubic systems and Abel equations, J. Differential Equations, 147 (1998), 435-454.  doi: 10.1006/jdeq.1998.3420.

[18]

F.S. Dias and L.F. Mello, The center-focus problem and small amplitude limit cycles in rigid systems, Discrete Contin. Dyn. Syst., 32 (2012), 1627-1637.  doi: 10.3934/dcds.2012.32.1627.

[19]

A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Nauka, Moscow, 1985 (transl. Kluwer, Dordrecht, 1988). doi: 10.1007/978-94-015-7793-9.

[20]

G. R. Fowles and G. L. Cassidy, Analytical Mechanics, Saunders Collegs Publishing, Philadelphia, Orlando, FL, 1993.

[21]

A. GasullR. Prohens and J. Torregrosa, Limit cycles for rigid cubic systems, J. Math. Anal. Appl., 303 (2005), 391-404.  doi: 10.1016/j.jmaa.2004.07.030.

[22]

A. Gasull and J. Torregrosa, Exact number of limit cycles for a family of rigid systems, Proc. Amer. Math. Soc., 133 (2005), 751-758.  doi: 10.1090/S0002-9939-04-07542-2.

[23]

P. Guha and A. Ghose Choudhury, On planar and non-planar isochronous systems and Poisson structures, Int. J. Geom. Methods Mod. Phys., 7 (2010), 1115-1131.  doi: 10.1142/S0219887810004750.

[24]

J. Itikawa and J. Llibre, Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers, J. Comp. Appl. Math., 277 (2015), 171-191.  doi: 10.1016/j.cam.2014.09.007.

[25]

J. Itikawa and J. Llibre, Phase portraits of uniform isochronous quartic centers, J. Comp. Appl. Math., 287 (2015), 98-114.  doi: 10.1016/j.cam.2015.02.046.

[26]

J. Itikawa and J. Llibre, Limit cycles bifurcating from the period annulus of a uniform isochronous center in a quartic polynomial differential system, Electron. J. Differential Equations, 246 (2015), 1-11. 

[27]

J. Itikawa, J. Llibre and D. D. Novaes, A new result on averaging theory for a class of discontinuous planar differential systems with applications, to appear in Revista Matemática Iberoamericana.

[28]

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, Comput. Neurosci. , MIT Press, Cambridge, MA, 2007.

[29]

J. LlibreA.C. Mereu and D.D. Novaes, Averaging theory for discontinuous piecewise differential systems, J. Differential Equations, 258 (2015), 4007-4032.  doi: 10.1016/j.jde.2015.01.022.

[30]

J. Llibre and A.C. Mereu, Limit cycles for discontinuous quadratic differential systems with two zones, J. Math. Anal. Appl., 413 (2014), 763-775.  doi: 10.1016/j.jmaa.2013.12.031.

[31]

N. G. Lloyd, Degree Theory, Cambridge Tracts in Math. 73 Cambridge, 1978.

[32]

W.S. Loud, Behavior of the period of solutions of certain plane autonomous systems near centers, Contributions to Differential Equations, 3 (1964), 21-36. 

[33]

O. Makarenkov and J.S.W. Lamb, Dynamics and bifurcations of nonsmooth systems: A survey, Physica D, 241 (2012), 1826-1844.  doi: 10.1016/j.physd.2012.08.002.

[34]

P. MardesicC. Rousseau and B. Toni, Linearization of isochronous centers, J. Differential Equations, 121 (1995), 67-108.  doi: 10.1006/jdeq.1995.1122.

[35]

L. Peng and Z. Feng, Bifurcation of limit cycles from quartic isochronous systems, Elec. J. Differential Equations, 95 (2014), 1-14. 

[36]

D. J. W. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, in World Scientific Series on Nonlinear Science A, 69, World Scientific, Singapore, 2010.

[37]

M. A. Teixeira, Perturbation Theory for Non-smooth Systems, in Meyers: Encyclopedia of Complexity and Systems Science, 1 (Perturbation Theory), 1325-1336, Springer, New York, 2012.

[38]

E.P. Volokitin and V.M. Cheresiz, Singular points and first integrals of holomorphic dynamical systems, J. Math. Sciences, 203 (2014), 605-620.  doi: 10.1007/s10958-014-2162-y.

show all references

References:
[1]

A. Algaba and M. Reyes, Computing center conditions for vector fields with constant angular speed, J. Comput. Appl. Math., 154 (2003), 143-159.  doi: 10.1016/S0377-0427(02)00818-X.

[2]

A. Algaba, M. Reyes, T. Ortega and A. Bravo, Campos cuárticos con velocidad angular constante, in Actas : XVI CEDYA Congreso de Ecuaciones Diferenciales y Aplicaciones, VI CMA Congreso de Matemática Aplicada, Las Palmas de Gran Canaria, 2 (1999), 1341-1348.

[3]

A. AlgabaM. Reyes and A. Bravo, Geometry of the uniformly isochronous centers with polynomial commutator, Differential Equations Dynam. Systems, 10 (2002), 257-275. 

[4]

N. N. Bautin, On the number of limit cycles which appear with the variation of the coefficients from an equilibrium position of focus or center type, American Math. Soc. Translation 1954 (1954), 19pp.

[5]

M. di Bernardo, C. J. Budd, A. R. Champneys and P. Kowalczyk, Piecewise-smooth Dynamical Systems: Theory and Applications Appl. Math. Sci. , 163 Spring-Verlag, London, 2008.

[6]

A. Buicǎ and J. Llibre, Averaging methods for finding periodic orbits via Brower degree, Bull. Sci. Math., 128 (2004), 7-22. 

[7]

J. ChavarrigaI.A. García and J. Giné, On the integrability of the differential equations defined by the sum of homogeneous vector fields with degenerate infinity, Int. J. of Bif. and Chaos, 11 (2001), 711-722.  doi: 10.1142/S0218127401002390.

[8]

J. ChavarrigaJ. Giné and I.A. García, Isochronous centers of cubic systems with degenerate infinity, Diff. Eq. Dyn. Sys., 7 (1999), 221-238. 

[9]

J. Chavarriga and M. Sabatini, A survey of isochronous centers, Qualitative Theory of Dynamical Systems, 1 (1999), 1-70.  doi: 10.1007/BF02969404.

[10]

C. Chicone and M. Jacobs, Bifurcation of limit cycles from quadratic isochrones, J. Differential Equations, 91 (1991), 268-326.  doi: 10.1016/0022-0396(91)90142-V.

[11]

C. Christopher and C. Li, Limit Cycles of Differential Equations, Birkhäuser, Boston, 2007.

[12]

A.G. Choudhury and P. Guha, On commuting vector fields and Darboux functions for planar differential equations, Lobachevskii J. Math., 34 (2013), 212-226.  doi: 10.1134/S1995080213030049.

[13]

B. CollA. Gasull and R. Prohens, Bifurcation of limit cycles from two families of centers, Dyn. Contin. Discrete Impuls. Syst., 12 (2005), 275-287. 

[14]

C.B. Collins, Conditions for a center in a simple class of cubic systems, Differential and Integral Equations, 10 (1997), 333-356. 

[15]

R. Conti, Uniformly isochronous centers of polynomial systems in $\mathbb{R}^2$, Lecture Notes in Pure and Appl. Math., 152 (1994), 21-31. 

[16]

R. Conti, Centers of planar polynomial systems. A review, Le Matematiche, 53 (1998), 207-240. 

[17]

J. DevlinN.G. Lloyd and J.M. Pearson, Cubic systems and Abel equations, J. Differential Equations, 147 (1998), 435-454.  doi: 10.1006/jdeq.1998.3420.

[18]

F.S. Dias and L.F. Mello, The center-focus problem and small amplitude limit cycles in rigid systems, Discrete Contin. Dyn. Syst., 32 (2012), 1627-1637.  doi: 10.3934/dcds.2012.32.1627.

[19]

A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides, Nauka, Moscow, 1985 (transl. Kluwer, Dordrecht, 1988). doi: 10.1007/978-94-015-7793-9.

[20]

G. R. Fowles and G. L. Cassidy, Analytical Mechanics, Saunders Collegs Publishing, Philadelphia, Orlando, FL, 1993.

[21]

A. GasullR. Prohens and J. Torregrosa, Limit cycles for rigid cubic systems, J. Math. Anal. Appl., 303 (2005), 391-404.  doi: 10.1016/j.jmaa.2004.07.030.

[22]

A. Gasull and J. Torregrosa, Exact number of limit cycles for a family of rigid systems, Proc. Amer. Math. Soc., 133 (2005), 751-758.  doi: 10.1090/S0002-9939-04-07542-2.

[23]

P. Guha and A. Ghose Choudhury, On planar and non-planar isochronous systems and Poisson structures, Int. J. Geom. Methods Mod. Phys., 7 (2010), 1115-1131.  doi: 10.1142/S0219887810004750.

[24]

J. Itikawa and J. Llibre, Limit cycles for continuous and discontinuous perturbations of uniform isochronous cubic centers, J. Comp. Appl. Math., 277 (2015), 171-191.  doi: 10.1016/j.cam.2014.09.007.

[25]

J. Itikawa and J. Llibre, Phase portraits of uniform isochronous quartic centers, J. Comp. Appl. Math., 287 (2015), 98-114.  doi: 10.1016/j.cam.2015.02.046.

[26]

J. Itikawa and J. Llibre, Limit cycles bifurcating from the period annulus of a uniform isochronous center in a quartic polynomial differential system, Electron. J. Differential Equations, 246 (2015), 1-11. 

[27]

J. Itikawa, J. Llibre and D. D. Novaes, A new result on averaging theory for a class of discontinuous planar differential systems with applications, to appear in Revista Matemática Iberoamericana.

[28]

E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, Comput. Neurosci. , MIT Press, Cambridge, MA, 2007.

[29]

J. LlibreA.C. Mereu and D.D. Novaes, Averaging theory for discontinuous piecewise differential systems, J. Differential Equations, 258 (2015), 4007-4032.  doi: 10.1016/j.jde.2015.01.022.

[30]

J. Llibre and A.C. Mereu, Limit cycles for discontinuous quadratic differential systems with two zones, J. Math. Anal. Appl., 413 (2014), 763-775.  doi: 10.1016/j.jmaa.2013.12.031.

[31]

N. G. Lloyd, Degree Theory, Cambridge Tracts in Math. 73 Cambridge, 1978.

[32]

W.S. Loud, Behavior of the period of solutions of certain plane autonomous systems near centers, Contributions to Differential Equations, 3 (1964), 21-36. 

[33]

O. Makarenkov and J.S.W. Lamb, Dynamics and bifurcations of nonsmooth systems: A survey, Physica D, 241 (2012), 1826-1844.  doi: 10.1016/j.physd.2012.08.002.

[34]

P. MardesicC. Rousseau and B. Toni, Linearization of isochronous centers, J. Differential Equations, 121 (1995), 67-108.  doi: 10.1006/jdeq.1995.1122.

[35]

L. Peng and Z. Feng, Bifurcation of limit cycles from quartic isochronous systems, Elec. J. Differential Equations, 95 (2014), 1-14. 

[36]

D. J. W. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, in World Scientific Series on Nonlinear Science A, 69, World Scientific, Singapore, 2010.

[37]

M. A. Teixeira, Perturbation Theory for Non-smooth Systems, in Meyers: Encyclopedia of Complexity and Systems Science, 1 (Perturbation Theory), 1325-1336, Springer, New York, 2012.

[38]

E.P. Volokitin and V.M. Cheresiz, Singular points and first integrals of holomorphic dynamical systems, J. Math. Sciences, 203 (2014), 605-620.  doi: 10.1007/s10958-014-2162-y.

Table 1.  Number of limit cycles for continuous and discontinuous quadratic and cubic differential systems
CaseNumber of limit cycles for
system (1)system (2)
Continuous23
Discontinuous with 2 zones57
Discontinuous with 4 zones1012
CaseNumber of limit cycles for
system (1)system (2)
Continuous23
Discontinuous with 2 zones57
Discontinuous with 4 zones1012
[1]

Jaume Llibre, Yilei Tang. Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1769-1784. doi: 10.3934/dcdsb.2018236

[2]

B. Coll, A. Gasull, R. Prohens. Center-focus and isochronous center problems for discontinuous differential equations. Discrete and Continuous Dynamical Systems, 2000, 6 (3) : 609-624. doi: 10.3934/dcds.2000.6.609

[3]

Jackson Itikawa, Jaume Llibre. Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 121-131. doi: 10.3934/dcdsb.2016.21.121

[4]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[5]

Bourama Toni. Upper bounds for limit cycle bifurcation from an isochronous period annulus via a birational linearization. Conference Publications, 2005, 2005 (Special) : 846-853. doi: 10.3934/proc.2005.2005.846

[6]

Shanshan Liu, Maoan Han. Bifurcation of limit cycles in a family of piecewise smooth systems via averaging theory. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 3115-3124. doi: 10.3934/dcdss.2020133

[7]

Xingwu Chen, Jaume Llibre, Weinian Zhang. Averaging approach to cyclicity of hopf bifurcation in planar linear-quadratic polynomial discontinuous differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3953-3965. doi: 10.3934/dcdsb.2017203

[8]

Min Li, Maoan Han. On the number of limit cycles of a quartic polynomial system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (9) : 3167-3181. doi: 10.3934/dcdss.2020337

[9]

Ai Ke, Maoan Han, Wei Geng. The number of limit cycles from the perturbation of a quadratic isochronous system with two switching lines. Communications on Pure and Applied Analysis, 2022, 21 (5) : 1793-1809. doi: 10.3934/cpaa.2022047

[10]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[11]

Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893

[12]

Iliya D. Iliev, Chengzhi Li, Jiang Yu. Bifurcations of limit cycles in a reversible quadratic system with a center, a saddle and two nodes. Communications on Pure and Applied Analysis, 2010, 9 (3) : 583-610. doi: 10.3934/cpaa.2010.9.583

[13]

Jihua Yang, Erli Zhang, Mei Liu. Limit cycle bifurcations of a piecewise smooth Hamiltonian system with a generalized heteroclinic loop through a cusp. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2321-2336. doi: 10.3934/cpaa.2017114

[14]

Jaume Giné. Center conditions for generalized polynomial kukles systems. Communications on Pure and Applied Analysis, 2017, 16 (2) : 417-426. doi: 10.3934/cpaa.2017021

[15]

Isaac A. García, Douglas S. Shafer. Cyclicity of a class of polynomial nilpotent center singularities. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2497-2520. doi: 10.3934/dcds.2016.36.2497

[16]

Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439

[17]

Weizhu Bao, Chunmei Su. Uniform error estimates of a finite difference method for the Klein-Gordon-Schrödinger system in the nonrelativistic and massless limit regimes. Kinetic and Related Models, 2018, 11 (4) : 1037-1062. doi: 10.3934/krm.2018040

[18]

Cheng-Jie Liu, Feng Xie, Tong Yang. Uniform regularity and vanishing viscosity limit for the incompressible non-resistive MHD system with TMF. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2725-2750. doi: 10.3934/cpaa.2021073

[19]

Jaume Llibre, Dana Schlomiuk. On the limit cycles bifurcating from an ellipse of a quadratic center. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1091-1102. doi: 10.3934/dcds.2015.35.1091

[20]

Hany A. Hosham, Eman D Abou Elela. Discontinuous phenomena in bioreactor system. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2955-2969. doi: 10.3934/dcdsb.2018294

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (184)
  • HTML views (101)
  • Cited by (2)

[Back to Top]