# American Institute of Mathematical Sciences

November  2017, 22(9): 3317-3340. doi: 10.3934/dcdsb.2017139

## On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability

 University of Hamburg, Department of Mathematics, Bundesstrasse 55,20146 Hamburg, Germany

Received  September 2016 Revised  February 2017 Published  April 2017

This work is concerned with the study of the scalar delay differential equation
 $z^{\prime\prime}(t)=h^2\,V(z(t-1)-z(t))+h\,z^\prime(t)$
motivated by a simple car-following model on an unbounded straight line. Here, the positive real
 $h$
denotes some parameter, and
 $V$
is some so-called optimal velocity function of the traffic model involved. We analyze the existence and local stability properties of solutions
 $z(t)=c\,t+d$
,
 $t∈\mathbb{R}$
, with
 $c,d∈\mathbb{R}$
. In the case
 $c\not=0$
, such a solution of the differential equation forms a wavefront solution of the car-following model where all cars are uniformly spaced on the line and move with the same constant velocity. In particular, it is shown that all but one of these wavefront solutions are located on two branches parametrized by
 $h$
. Furthermore, we prove that along the one branch all solutions are unstable due to the principle of linearized instability, whereas along the other branch some of the solutions may be stable. The last point is done by carrying out a center manifold reduction as the linearization does always have a zero eigenvalue. Finally, we provide some numerical examples demonstrating the obtained analytical results.
Citation: Eugen Stumpf. On a delay differential equation arising from a car-following model: Wavefront solutions with constant-speed and their stability. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3317-3340. doi: 10.3934/dcdsb.2017139
##### References:
 [1] M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Structure stability of congestion in traffic dynamics, Japan Journal of Industrial and Applied Mathematics, 11 (1994), 203-223.  doi: 10.1007/BF03167222. [2] M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Physical Review E, 51 (1995), 1035-1042.  doi: 10.1103/PhysRevE.51.1035. [3] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H. -O. Walther, Delay Equations. Functional, Complex, and Nonlinear Analysis, Applied Mathematical Sciences, 110, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4206-2. [4] I. Gasser and E. Stumpf, work in progress. [5] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7. [6] T. Insperger and G. Stépán, Semi-discretization for Time-Delay Systems. Stability and Engineering Applications, Applied Mathematical Sciences, 178, Springer-Verlag, New York, 2011. doi: 10.1007/978-1-4614-0335-7. [7] MATLAB R2016a, The MathWorks Inc. , Natick, Massachusetts, 2016. [8] E. Stumpf, work in progress.

show all references

##### References:
 [1] M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Structure stability of congestion in traffic dynamics, Japan Journal of Industrial and Applied Mathematics, 11 (1994), 203-223.  doi: 10.1007/BF03167222. [2] M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama, Dynamical model of traffic congestion and numerical simulation, Physical Review E, 51 (1995), 1035-1042.  doi: 10.1103/PhysRevE.51.1035. [3] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel and H. -O. Walther, Delay Equations. Functional, Complex, and Nonlinear Analysis, Applied Mathematical Sciences, 110, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4206-2. [4] I. Gasser and E. Stumpf, work in progress. [5] J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. doi: 10.1007/978-1-4612-4342-7. [6] T. Insperger and G. Stépán, Semi-discretization for Time-Delay Systems. Stability and Engineering Applications, Applied Mathematical Sciences, 178, Springer-Verlag, New York, 2011. doi: 10.1007/978-1-4614-0335-7. [7] MATLAB R2016a, The MathWorks Inc. , Natick, Massachusetts, 2016. [8] E. Stumpf, work in progress.
The schematic setting of the car-following model
Function $V_q$ and its derivative for $V^{\max}=1$ and $d_S=0.5$
The region $S$ from Proposition 5
Numerically calculated solution $z$ and its first derivative from Example 1 ($c\approx 0.0501$, $h=0.2$, and $V^{\max}=100$)
Numerical computation of the disturbed solution $z^*$ and its first derivative from Example 1 ($c^{*}_e\approx 0.0451$)
Numerical computation of solution $z$ and its first derivative from Example 2 ($c\approx 19.9499$, $h=0.2$, and $V^{\max}=100$)
Numerical computation of solution $z$ and its first derivative from Example 3 ($c\approx 0.2492$, $h=1.5$, and $V^{\max}=2.841$)
The final stage of the numerical computation of solution $z$ and its first derivative from Example 3 ($c\approx 0.2492$, $h=1.5$, and $V^{\max}=2.841$)
 [1] Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157 [2] Ábel Garab. Unique periodic orbits of a delay differential equation with piecewise linear feedback function. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 2369-2387. doi: 10.3934/dcds.2013.33.2369 [3] Samuel Bernard, Fabien Crauste. Optimal linear stability condition for scalar differential equations with distributed delay. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 1855-1876. doi: 10.3934/dcdsb.2015.20.1855 [4] Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249 [5] Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689 [6] Leonid Shaikhet. Stability of equilibriums of stochastically perturbed delay differential neoclassical growth model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1565-1573. doi: 10.3934/dcdsb.2017075 [7] Tibor Krisztin. A local unstable manifold for differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 993-1028. doi: 10.3934/dcds.2003.9.993 [8] Raimund Bürger, Christophe Chalons, Rafael Ordoñez, Luis Miguel Villada. A multiclass Lighthill-Whitham-Richards traffic model with a discontinuous velocity function. Networks and Heterogeneous Media, 2021, 16 (2) : 187-219. doi: 10.3934/nhm.2021004 [9] Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure and Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839 [10] Hongyu Cheng, Rafael de la Llave. Time dependent center manifold in PDEs. Discrete and Continuous Dynamical Systems, 2020, 40 (12) : 6709-6745. doi: 10.3934/dcds.2020213 [11] Azmy S. Ackleh, Keng Deng. Stability of a delay equation arising from a juvenile-adult model. Mathematical Biosciences & Engineering, 2010, 7 (4) : 729-737. doi: 10.3934/mbe.2010.7.729 [12] Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations and Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493 [13] Abdelhai Elazzouzi, Aziz Ouhinou. Optimal regularity and stability analysis in the $\alpha-$Norm for a class of partial functional differential equations with infinite delay. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 115-135. doi: 10.3934/dcds.2011.30.115 [14] Dimitri Breda, Sara Della Schiava. Pseudospectral reduction to compute Lyapunov exponents of delay differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2727-2741. doi: 10.3934/dcdsb.2018092 [15] Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control and Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015 [16] César Augusto Bortot, Wellington José Corrêa, Ryuichi Fukuoka, Thales Maier Souza. Exponential stability for the locally damped defocusing Schrödinger equation on compact manifold. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1367-1386. doi: 10.3934/cpaa.2020067 [17] Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete and Continuous Dynamical Systems, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873 [18] Stefano Bianchini, Alberto Bressan. A center manifold technique for tracing viscous waves. Communications on Pure and Applied Analysis, 2002, 1 (2) : 161-190. doi: 10.3934/cpaa.2002.1.161 [19] Seung-Yeal Ha, Mitsuru Yamazaki. $L^p$-stability estimates for the spatially inhomogeneous discrete velocity Boltzmann model. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 353-364. doi: 10.3934/dcdsb.2009.11.353 [20] Teresa Faria, José J. Oliveira. On stability for impulsive delay differential equations and application to a periodic Lasota-Wazewska model. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2451-2472. doi: 10.3934/dcdsb.2016055

2020 Impact Factor: 1.327