\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling

  • * Corresponding author: Lianzhang Bao

    * Corresponding author: Lianzhang Bao 
Abstract Full Text(HTML) Related Papers Cited by
  • This work deals with the properties of the traveling wave solutions of a double degenerate cross-diffusion model

    $\begin{eqnarray*} \frac{\partial b}{\partial t} & = & D_b\nabla·\{n^pb(1-b)\nabla b\}+ n^qb^l, \\ \frac{\partial n}{\partial t} & = & D_n\nabla^2n-n^qb^l, \end{eqnarray*}$

    where $p≥q 0, q>1, l>1$ . This system accounts for degenerate diffusion at the population density $n=b=0$ and $b=1$ modeling the growth of certain bacteria colony with volume filling. The existence of the finite traveling wave solutions is proven which provides partial answers to the spatial patterns of the colony. In order to overcome the difficulty of traditional phase plane analysis on higher dimension, we use Schauder fixed point theorem and shooting arguments in our paper.

    Mathematics Subject Classification: Primary:34B16, 35K65;Secondary:35K40.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] K. Anguige, Multi-phase Stefan problems for a non-linear one-dimensional model of cell-to-cell adhesion and diffusion, European J. Appl. Math., 21 (2010), 109-136.  doi: 10.1017/S0956792509990167.
    [2] K. Anguige, A one-dimensional model for the interaction between cell-to-cell adhesion and chemotactic signalling, European J. Appl. Math., 22 (2011), 291-316.  doi: 10.1017/S0956792511000040.
    [3] K. Anguige and C. Schmeiser, A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion, J. Math. Biol., 58 (2009), 395-427.  doi: 10.1007/s00285-008-0197-8.
    [4] L. Bao and Z. Zhou, Traveling wave in backward and forward parabolic equations from population dynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1507-1522.  doi: 10.3934/dcdsb.2014.19.1507.
    [5] J. W. Barrett and K. Deckelnick, Existence, uniquesness and approximation of a doubly-degenerate nonlinear parabolic system modeling bacterial evolution, Math. Models Methods Appl. Sci., 17 (2007), 1095-1127.  doi: 10.1142/S0218202507002212.
    [6] H. BerestyckiG. NadinB. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Traveling waves and steady states, Nonlinearity, 22 (2009), 2813-2844.  doi: 10.1088/0951-7715/22/12/002.
    [7] E. O. Burdene and H. C. Berg, Complex patterns formed by motile cells of Escherichia coli, Nature, 349 (1991), 630-633. 
    [8] E. O. Burdene and H. C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995), 49-53. 
    [9] P. Feng and Z. Zhou, Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony, Commun. Pure Appl. Anal., 6 (2007), 1145-1165.  doi: 10.3934/cpaa.2007.6.1145.
    [10] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugen., 7 (1937), 353-369. 
    [11] K. P. Hadeler, Travelling fronts and free boundary value problems, in Numerical Treatment of Free Boundary Value Problems (eds. J. Albretch, L. Collatz, K. H. Hoffman), Basel: Birkhauser, 1981.
    [12] K. KawasakiA. MochizukiM. MatsushitaT. Umeda and N. Schigesada, Modeling spatio-temporal patterns generated by bacillus subtilis, J. Theor. Biol., 188 (1997), 177-185. 
    [13] A. Kolmogorov, I. Petrovsky and I. N. Piskounov, Study of the diffusion equation with growth of the quantity of matter and its applications to a biological problem, Applicable mathematics of non-physical phenomena(eds. F. OLiveira-Pinto, B. W. Conolly), New York: Wiley, 1982.
    [14] L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations, J. Differential Equations, 195 (2003), 471-496.  doi: 10.1016/j.jde.2003.06.005.
    [15] R. A. SatnoianuP. K. MainiF. S. Garduno and J. P. Armitage, Traveling waves in a nonlinear degenerate diffusion model for bacterial pattern formation, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 339-362.  doi: 10.3934/dcdsb.2001.1.339.
  • 加载中
SHARE

Article Metrics

HTML views(493) PDF downloads(193) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return