This work deals with the properties of the traveling wave solutions of a double degenerate cross-diffusion model
$\begin{eqnarray*} \frac{\partial b}{\partial t} & = & D_b\nabla·\{n^pb(1-b)\nabla b\}+ n^qb^l, \\ \frac{\partial n}{\partial t} & = & D_n\nabla^2n-n^qb^l, \end{eqnarray*}$
where
Citation: |
[1] |
K. Anguige, Multi-phase Stefan problems for a non-linear one-dimensional model of cell-to-cell adhesion and diffusion, European J. Appl. Math., 21 (2010), 109-136.
doi: 10.1017/S0956792509990167.![]() ![]() ![]() |
[2] |
K. Anguige, A one-dimensional model for the interaction between cell-to-cell adhesion and chemotactic signalling, European J. Appl. Math., 22 (2011), 291-316.
doi: 10.1017/S0956792511000040.![]() ![]() ![]() |
[3] |
K. Anguige and C. Schmeiser, A one-dimensional model of cell diffusion and aggregation, incorporating volume filling and cell-to-cell adhesion, J. Math. Biol., 58 (2009), 395-427.
doi: 10.1007/s00285-008-0197-8.![]() ![]() ![]() |
[4] |
L. Bao and Z. Zhou, Traveling wave in backward and forward parabolic equations from population dynamics, Discrete Contin. Dyn. Syst. Ser. B, 19 (2014), 1507-1522.
doi: 10.3934/dcdsb.2014.19.1507.![]() ![]() ![]() |
[5] |
J. W. Barrett and K. Deckelnick, Existence, uniquesness and approximation of a doubly-degenerate nonlinear parabolic system modeling bacterial evolution, Math. Models Methods Appl. Sci., 17 (2007), 1095-1127.
doi: 10.1142/S0218202507002212.![]() ![]() ![]() |
[6] |
H. Berestycki, G. Nadin, B. Perthame and L. Ryzhik, The non-local Fisher-KPP equation: Traveling waves and steady states, Nonlinearity, 22 (2009), 2813-2844.
doi: 10.1088/0951-7715/22/12/002.![]() ![]() ![]() |
[7] |
E. O. Burdene and H. C. Berg, Complex patterns formed by motile cells of Escherichia coli, Nature, 349 (1991), 630-633.
![]() |
[8] |
E. O. Burdene and H. C. Berg, Dynamics of formation of symmetrical patterns by chemotactic bacteria, Nature, 376 (1995), 49-53.
![]() |
[9] |
P. Feng and Z. Zhou, Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony, Commun. Pure Appl. Anal., 6 (2007), 1145-1165.
doi: 10.3934/cpaa.2007.6.1145.![]() ![]() ![]() |
[10] |
R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugen., 7 (1937), 353-369.
![]() |
[11] |
K. P. Hadeler, Travelling fronts and free boundary value problems, in Numerical Treatment of Free Boundary Value Problems (eds. J. Albretch, L. Collatz, K. H. Hoffman), Basel: Birkhauser, 1981.
![]() |
[12] |
K. Kawasaki, A. Mochizuki, M. Matsushita, T. Umeda and N. Schigesada, Modeling spatio-temporal patterns generated by bacillus subtilis, J. Theor. Biol., 188 (1997), 177-185.
![]() |
[13] |
A. Kolmogorov, I. Petrovsky and I. N. Piskounov, Study of the diffusion equation with growth of the quantity of matter and its applications to a biological problem, Applicable mathematics of non-physical phenomena(eds. F. OLiveira-Pinto, B. W. Conolly), New York: Wiley, 1982.
![]() |
[14] |
L. Malaguti and C. Marcelli, Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations, J. Differential Equations, 195 (2003), 471-496.
doi: 10.1016/j.jde.2003.06.005.![]() ![]() ![]() |
[15] |
R. A. Satnoianu, P. K. Maini, F. S. Garduno and J. P. Armitage, Traveling waves in a nonlinear degenerate diffusion model for bacterial pattern formation, Discrete Contin. Dyn. Syst. Ser. B, 1 (2001), 339-362.
doi: 10.3934/dcdsb.2001.1.339.![]() ![]() ![]() |