• Previous Article
    The stabilized semi-implicit finite element method for the surface Allen-Cahn equation
  • DCDS-B Home
  • This Issue
  • Next Article
    Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony with volume filling
September  2017, 22(7): 2831-2856. doi: 10.3934/dcdsb.2017153

New convergence analysis for assumed stress hybrid quadrilateral finite element method

School of Mathematics, Sichuan University, Chengdu 610064, China

* Corresponding author: Xiaoping Xie, xpxie@scu.edu.cn

Received  June 2016 Revised  March 2017 Published  May 2017

Fund Project: This work was supported by Major Research Plan of National Natural Science Foundation of China (91430105) and National Natural Science Foundation of China (11171239,11401407).

New error estimates are established for Pian and Sumihara's (PS) 4-node assumed stress hybrid quadrilateral element [T.H.H. Pian, K. Sumihara, Rational approach for assumed stress finite elements, Int. J. Numer. Methods Engrg., 20 (1984), 1685-1695], which is widely used in engineering computation. Based on an equivalent displacement-based formulation to the PS element, we show that the numerical strain and a postprocessed numerical stress are uniformly convergent with respect to the Lamé constant $λ$ on the meshes produced through the uniform bisection procedure. Within this analysis framework, we also show that both the numerical strain and stress are uniformly convergent on meshes which are stable for the $Q_1-P_0$ Stokes element.

Citation: Binjie Li, Xiaoping Xie, Shiquan Zhang. New convergence analysis for assumed stress hybrid quadrilateral finite element method. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2831-2856. doi: 10.3934/dcdsb.2017153
References:
[1]

D. BoffiF. Brezzi and M. Fortin, Finite elements for the Stokes problem, in Mixed Finite Elements, Compatibility Conditions, and Applications (eds. D. Boffi and L. Gastaldi), Springer Berlin-Heidelberg, (2008), 45-100. 

[2]

D. Braess, Enhanced assumed strain elements and locking in membrane problems, Computer Methods in Applied Mechanics and Engineering, 165 (1998), 155-174.  doi: 10.1016/S0045-7825(98)00037-1.

[3]

D. BraessC. Carstensen and B. D. Reddy, Uniform convergence and a posteriori error estimators for the enhanced strain finite element method, Numerische Mathematik, 96 (2004), 461-479.  doi: 10.1007/s00211-003-0486-5.

[4]

S. C. Brenner and L. Y. Sung, Linear finite element methods for planar linear elasticity, Mathematics of Computation, 59 (1992), 321-338.  doi: 10.2307/2153060.

[5]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3$^{rd}$ edition, Springer-Verlag, New York, 2008. doi: 10.1007/978-0-387-75934-0.

[6]

G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics Springer-Verlag, Berlin, 1976.

[7]

V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag, New York, 1986. doi: 10.1007/978-3-642-61623-5.

[8]

T. H. H. Pian, Derivation of element stiffness matrices by assumed stress distributions, AIAA Journal, 7 (1964), 1333-1336. 

[9]

T. H. H. Pian and K. Sumihara, Rational approach for assumed stress finite elements, International Journal for Numerical Methods in Engineering, 20 (1984), 1685-1695. 

[10]

J. Pitkäranta and R. Stenberg, Error bounds for the approximation of the Stokes problem using bilinear/constant elements on irregular quadrilateral meshes, in The Mathematics of Finite Elements and Applications V, (de. Whiteman J), Academic Press, (1985), 325-334. 

[11]

J. Qin and S. Zhang, On the selective local stabilization of the mixed Q1-P0 element, International Journal for Numerical Methods in Fluids, 55 (2007), 1121-1141.  doi: 10.1002/fld.1505.

[12]

B. D. Reddy and J. C. Simo, Stability and convergence of a class of enhanced strain methods, SIAM Journal on Numerical Analysis, 32 (1995), 1705-1728.  doi: 10.1137/0732077.

[13]

Z. Shi, A convergence condition for the quadrilateral wilson element, Numerische Mathematik, 44 (1984), 349-361.  doi: 10.1007/BF01405567.

[14]

J. C. Simo and M. S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, International Journal for Numerical Methods in Engineering, 29 (1990), 1595-1638.  doi: 10.1002/nme.1620290802.

[15]

R. L. TaylorE. L. Wilson and P. J. Beresford, A nonconforming element for stress analysis, International Journal for Numerical Methods in Engineering, 10 (1976), 1211-1219. 

[16]

E. L. WilsonR. L. TaylorW. P. Doherty and J. Ghaboussi, Incompatible displacement models, in Numerical Computer Methods in Structural Mechanics, Academic Press, (1973), 43-57. 

[17]

X. Xie and T. Zhou, Optimization of stress modes by energy compatibility for 4-node hybrid quadrilaterals, International Journal for Numerical Methods in Engineering, 59 (2004), 293-313.  doi: 10.1002/nme.877.

[18]

G. YuX. Xie and C. Carstensen, Uniform convergence and a posteriori error estimation for assumed stress hybrid finite element methods, Computer Methods in Applied Mechanics and Engineering, 200 (2011), 2421-2433.  doi: 10.1016/j.cma.2011.03.018.

[19]

Z. Zhang, Analysis of some quadrilateral nonconforming elements for incompressible elasticity, SIAM Journal on Numerical Analysis, 34 (1997), 640-663.  doi: 10.1137/S0036142995282492.

[20]

T. Zhou and X. Xie, A unified analysis for stress/strain hybrid methods of high performance, Computer Methods in Applied Mechanics and Engineering, 191 (2002), 4619-4640.  doi: 10.1016/S0045-7825(02)00396-1.

show all references

References:
[1]

D. BoffiF. Brezzi and M. Fortin, Finite elements for the Stokes problem, in Mixed Finite Elements, Compatibility Conditions, and Applications (eds. D. Boffi and L. Gastaldi), Springer Berlin-Heidelberg, (2008), 45-100. 

[2]

D. Braess, Enhanced assumed strain elements and locking in membrane problems, Computer Methods in Applied Mechanics and Engineering, 165 (1998), 155-174.  doi: 10.1016/S0045-7825(98)00037-1.

[3]

D. BraessC. Carstensen and B. D. Reddy, Uniform convergence and a posteriori error estimators for the enhanced strain finite element method, Numerische Mathematik, 96 (2004), 461-479.  doi: 10.1007/s00211-003-0486-5.

[4]

S. C. Brenner and L. Y. Sung, Linear finite element methods for planar linear elasticity, Mathematics of Computation, 59 (1992), 321-338.  doi: 10.2307/2153060.

[5]

S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3$^{rd}$ edition, Springer-Verlag, New York, 2008. doi: 10.1007/978-0-387-75934-0.

[6]

G. Duvaut and J. L. Lions, Inequalities in Mechanics and Physics Springer-Verlag, Berlin, 1976.

[7]

V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag, New York, 1986. doi: 10.1007/978-3-642-61623-5.

[8]

T. H. H. Pian, Derivation of element stiffness matrices by assumed stress distributions, AIAA Journal, 7 (1964), 1333-1336. 

[9]

T. H. H. Pian and K. Sumihara, Rational approach for assumed stress finite elements, International Journal for Numerical Methods in Engineering, 20 (1984), 1685-1695. 

[10]

J. Pitkäranta and R. Stenberg, Error bounds for the approximation of the Stokes problem using bilinear/constant elements on irregular quadrilateral meshes, in The Mathematics of Finite Elements and Applications V, (de. Whiteman J), Academic Press, (1985), 325-334. 

[11]

J. Qin and S. Zhang, On the selective local stabilization of the mixed Q1-P0 element, International Journal for Numerical Methods in Fluids, 55 (2007), 1121-1141.  doi: 10.1002/fld.1505.

[12]

B. D. Reddy and J. C. Simo, Stability and convergence of a class of enhanced strain methods, SIAM Journal on Numerical Analysis, 32 (1995), 1705-1728.  doi: 10.1137/0732077.

[13]

Z. Shi, A convergence condition for the quadrilateral wilson element, Numerische Mathematik, 44 (1984), 349-361.  doi: 10.1007/BF01405567.

[14]

J. C. Simo and M. S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, International Journal for Numerical Methods in Engineering, 29 (1990), 1595-1638.  doi: 10.1002/nme.1620290802.

[15]

R. L. TaylorE. L. Wilson and P. J. Beresford, A nonconforming element for stress analysis, International Journal for Numerical Methods in Engineering, 10 (1976), 1211-1219. 

[16]

E. L. WilsonR. L. TaylorW. P. Doherty and J. Ghaboussi, Incompatible displacement models, in Numerical Computer Methods in Structural Mechanics, Academic Press, (1973), 43-57. 

[17]

X. Xie and T. Zhou, Optimization of stress modes by energy compatibility for 4-node hybrid quadrilaterals, International Journal for Numerical Methods in Engineering, 59 (2004), 293-313.  doi: 10.1002/nme.877.

[18]

G. YuX. Xie and C. Carstensen, Uniform convergence and a posteriori error estimation for assumed stress hybrid finite element methods, Computer Methods in Applied Mechanics and Engineering, 200 (2011), 2421-2433.  doi: 10.1016/j.cma.2011.03.018.

[19]

Z. Zhang, Analysis of some quadrilateral nonconforming elements for incompressible elasticity, SIAM Journal on Numerical Analysis, 34 (1997), 640-663.  doi: 10.1137/S0036142995282492.

[20]

T. Zhou and X. Xie, A unified analysis for stress/strain hybrid methods of high performance, Computer Methods in Applied Mechanics and Engineering, 191 (2002), 4619-4640.  doi: 10.1016/S0045-7825(02)00396-1.

Figure 1.  A stable mesh for $Q_1\!-\!P_0$ Stokes element
Figure 2.  $\widehat\chi\circ F_K^{-1}$ for some $K\in\mathcal T_{2h}$
[1]

Zhong-Ci Shi, Xuejun Xu, Zhimin Zhang. The patch recovery for finite element approximation of elasticity problems under quadrilateral meshes. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 163-182. doi: 10.3934/dcdsb.2008.9.163

[2]

Gunther Uhlmann, Jenn-Nan Wang. Unique continuation property for the elasticity with general residual stress. Inverse Problems and Imaging, 2009, 3 (2) : 309-317. doi: 10.3934/ipi.2009.3.309

[3]

Chuanhao Guo, Erfang Shan, Wenli Yan. A superlinearly convergent hybrid algorithm for solving nonlinear programming. Journal of Industrial and Management Optimization, 2017, 13 (2) : 1009-1024. doi: 10.3934/jimo.2016059

[4]

Marta Štefánková. Inheriting of chaos in uniformly convergent nonautonomous dynamical systems on the interval. Discrete and Continuous Dynamical Systems, 2016, 36 (6) : 3435-3443. doi: 10.3934/dcds.2016.36.3435

[5]

Daniele Boffi, Franco Brezzi, Michel Fortin. Reduced symmetry elements in linear elasticity. Communications on Pure and Applied Analysis, 2009, 8 (1) : 95-121. doi: 10.3934/cpaa.2009.8.95

[6]

Victor Isakov, Nanhee Kim. Weak Carleman estimates with two large parameters for second order operators and applications to elasticity with residual stress. Discrete and Continuous Dynamical Systems, 2010, 27 (2) : 799-825. doi: 10.3934/dcds.2010.27.799

[7]

Cornel Marius Murea, Dan Tiba. Topological optimization and minimal compliance in linear elasticity. Evolution Equations and Control Theory, 2020, 9 (4) : 1115-1131. doi: 10.3934/eect.2020043

[8]

Bernd Schmidt. On the derivation of linear elasticity from atomistic models. Networks and Heterogeneous Media, 2009, 4 (4) : 789-812. doi: 10.3934/nhm.2009.4.789

[9]

Vyacheslav K. Isaev, Vyacheslav V. Zolotukhin. Introduction to the theory of splines with an optimal mesh. Linear Chebyshev splines and applications. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 471-489. doi: 10.3934/naco.2013.3.471

[10]

Guanglu Zhou. A quadratically convergent method for minimizing a sum of Euclidean norms with linear constraints. Journal of Industrial and Management Optimization, 2007, 3 (4) : 655-670. doi: 10.3934/jimo.2007.3.655

[11]

Zhichuan Zhu, Bo Yu, Li Yang. Globally convergent homotopy method for designing piecewise linear deterministic contractual function. Journal of Industrial and Management Optimization, 2014, 10 (3) : 717-741. doi: 10.3934/jimo.2014.10.717

[12]

Mark S. Gockenbach, Akhtar A. Khan. Identification of Lamé parameters in linear elasticity: a fixed point approach. Journal of Industrial and Management Optimization, 2005, 1 (4) : 487-497. doi: 10.3934/jimo.2005.1.487

[13]

Zhangxin Chen, Qiaoyuan Jiang, Yanli Cui. Locking-free nonconforming finite elements for planar linear elasticity. Conference Publications, 2005, 2005 (Special) : 181-189. doi: 10.3934/proc.2005.2005.181

[14]

Nanhee Kim. Uniqueness and Hölder type stability of continuation for the linear thermoelasticity system with residual stress. Evolution Equations and Control Theory, 2013, 2 (4) : 679-693. doi: 10.3934/eect.2013.2.679

[15]

Caterina Calgaro, Meriem Ezzoug, Ezzeddine Zahrouni. Stability and convergence of an hybrid finite volume-finite element method for a multiphasic incompressible fluid model. Communications on Pure and Applied Analysis, 2018, 17 (2) : 429-448. doi: 10.3934/cpaa.2018024

[16]

Thi-Thao-Phuong Hoang. Optimized Ventcel-Schwarz waveform relaxation and mixed hybrid finite element method for transport problems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022060

[17]

Stéphane Gaubert, Nikolas Stott. A convergent hierarchy of non-linear eigenproblems to compute the joint spectral radius of nonnegative matrices. Mathematical Control and Related Fields, 2020, 10 (3) : 573-590. doi: 10.3934/mcrf.2020011

[18]

David L. Russell. Control via decoupling of a class of second order linear hybrid systems. Discrete and Continuous Dynamical Systems - S, 2014, 7 (6) : 1321-1334. doi: 10.3934/dcdss.2014.7.1321

[19]

A. Alessandri, F. Bedouhene, D. Bouhadjra, A. Zemouche, P. Bagnerini. Observer-based control for a class of hybrid linear and nonlinear systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1213-1231. doi: 10.3934/dcdss.2020376

[20]

So-Hsiang Chou. An immersed linear finite element method with interface flux capturing recovery. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2343-2357. doi: 10.3934/dcdsb.2012.17.2343

2020 Impact Factor: 1.327

Metrics

  • PDF downloads (103)
  • HTML views (89)
  • Cited by (0)

Other articles
by authors

[Back to Top]