New error estimates are established for Pian and Sumihara's (PS) 4-node assumed stress hybrid quadrilateral element [T.H.H. Pian, K. Sumihara, Rational approach for assumed stress finite elements, Int. J. Numer. Methods Engrg., 20 (1984), 1685-1695], which is widely used in engineering computation. Based on an equivalent displacement-based formulation to the PS element, we show that the numerical strain and a postprocessed numerical stress are uniformly convergent with respect to the Lamé constant $λ$ on the meshes produced through the uniform bisection procedure. Within this analysis framework, we also show that both the numerical strain and stress are uniformly convergent on meshes which are stable for the $Q_1-P_0$ Stokes element.
Citation: |
[1] |
D. Boffi, F. Brezzi and M. Fortin, Finite elements for the Stokes problem, in Mixed Finite Elements, Compatibility Conditions, and Applications (eds. D. Boffi and L. Gastaldi), Springer
Berlin-Heidelberg, (2008), 45-100.
![]() |
[2] |
D. Braess, Enhanced assumed strain elements and locking in membrane problems, Computer Methods in Applied Mechanics and Engineering, 165 (1998), 155-174.
doi: 10.1016/S0045-7825(98)00037-1.![]() ![]() ![]() |
[3] |
D. Braess, C. Carstensen and B. D. Reddy, Uniform convergence and a posteriori error estimators for the enhanced strain finite element method, Numerische Mathematik, 96 (2004), 461-479.
doi: 10.1007/s00211-003-0486-5.![]() ![]() ![]() |
[4] |
S. C. Brenner and L. Y. Sung, Linear finite element methods for planar linear elasticity, Mathematics of Computation, 59 (1992), 321-338.
doi: 10.2307/2153060.![]() ![]() ![]() |
[5] |
S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, 3$^{rd}$ edition, Springer-Verlag, New York, 2008.
doi: 10.1007/978-0-387-75934-0.![]() ![]() ![]() |
[6] |
G. Duvaut and J. L. Lions,
Inequalities in Mechanics and Physics Springer-Verlag, Berlin, 1976.
![]() ![]() |
[7] |
V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms, Springer-Verlag, New York, 1986.
doi: 10.1007/978-3-642-61623-5.![]() ![]() ![]() |
[8] |
T. H. H. Pian, Derivation of element stiffness matrices by assumed stress distributions, AIAA Journal, 7 (1964), 1333-1336.
![]() |
[9] |
T. H. H. Pian and K. Sumihara, Rational approach for assumed stress finite elements, International Journal for Numerical Methods in Engineering, 20 (1984), 1685-1695.
![]() |
[10] |
J. Pitkäranta and R. Stenberg, Error bounds for the approximation of the Stokes problem using bilinear/constant elements on irregular quadrilateral meshes, in The Mathematics of
Finite Elements and Applications V, (de. Whiteman J), Academic Press, (1985), 325-334.
![]() ![]() |
[11] |
J. Qin and S. Zhang, On the selective local stabilization of the mixed Q1-P0 element, International Journal for Numerical Methods in Fluids, 55 (2007), 1121-1141.
doi: 10.1002/fld.1505.![]() ![]() ![]() |
[12] |
B. D. Reddy and J. C. Simo, Stability and convergence of a class of enhanced strain methods, SIAM Journal on Numerical Analysis, 32 (1995), 1705-1728.
doi: 10.1137/0732077.![]() ![]() ![]() |
[13] |
Z. Shi, A convergence condition for the quadrilateral wilson element, Numerische Mathematik, 44 (1984), 349-361.
doi: 10.1007/BF01405567.![]() ![]() ![]() |
[14] |
J. C. Simo and M. S. Rifai, A class of mixed assumed strain methods and the method of incompatible modes, International Journal for Numerical Methods in Engineering, 29 (1990), 1595-1638.
doi: 10.1002/nme.1620290802.![]() ![]() ![]() |
[15] |
R. L. Taylor, E. L. Wilson and P. J. Beresford, A nonconforming element for stress analysis, International Journal for Numerical Methods in Engineering, 10 (1976), 1211-1219.
![]() |
[16] |
E. L. Wilson, R. L. Taylor, W. P. Doherty and J. Ghaboussi, Incompatible displacement models, in Numerical Computer Methods in Structural Mechanics, Academic Press, (1973), 43-57.
![]() |
[17] |
X. Xie and T. Zhou, Optimization of stress modes by energy compatibility for 4-node hybrid quadrilaterals, International Journal for Numerical Methods in Engineering, 59 (2004), 293-313.
doi: 10.1002/nme.877.![]() ![]() ![]() |
[18] |
G. Yu, X. Xie and C. Carstensen, Uniform convergence and a posteriori error estimation for assumed stress hybrid finite element methods, Computer Methods in Applied Mechanics and Engineering, 200 (2011), 2421-2433.
doi: 10.1016/j.cma.2011.03.018.![]() ![]() ![]() |
[19] |
Z. Zhang, Analysis of some quadrilateral nonconforming elements for incompressible elasticity, SIAM Journal on Numerical Analysis, 34 (1997), 640-663.
doi: 10.1137/S0036142995282492.![]() ![]() ![]() |
[20] |
T. Zhou and X. Xie, A unified analysis for stress/strain hybrid methods of high performance, Computer Methods in Applied Mechanics and Engineering, 191 (2002), 4619-4640.
doi: 10.1016/S0045-7825(02)00396-1.![]() ![]() ![]() |