[1]
|
J. C. Alexander and J. A. Yorke, Global bifurcations of periodic orbits, Amer. J. Math., 100 (1978), 263-292.
doi: 10.2307/2373851.
|
[2]
|
J. Arino, C.C. McCluskey and P. van den Driessche, Global results for an epidemic model with vaccination that exhibits backward bifurcation, SIAM J. Appl. Math., 64 (2003), 260-276.
doi: 10.1137/S0036139902413829.
|
[3]
|
F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology volume 40 of Texts in Applied Mathematics, Springer, New York, 2012.
doi: 10.1007/978-1-4614-1686-9.
|
[4]
|
S.R. Carpenter and W.A. Brock, Rising variance: A leading indicator of ecological transition, Ecol. Lett., 9 (2006), 311-318.
doi: 10.1111/j.1461-0248.2005.00877.x.
|
[5]
|
S.-N. Chow and J. Mallet-Paret, The Fuller index and global Hopf bifurcation, J. Differential Equations, 29 (1978), 66-85.
doi: 10.1016/0022-0396(78)90041-4.
|
[6]
|
E. Gilad, M. Shachak and E. Meron, Dynamics and spatial organization of plant communities in water-limited systems, Theor. popul. biol., 72 (2007), 214-230.
doi: 10.1016/j.tpb.2007.05.002.
|
[7]
|
E. Gilad, J. von Hardenberg, A. Provenzale, M. Shachak and E. Meron, Ecosystem engineers: From pattern formation to habitat creation Phys. Rev. Lett. 93 (2004), 098105.
doi: 10.1103/PhysRevLett. 93. 098105.
|
[8]
|
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields volume 42 of Applied Mathematical Sciences, Springer-Verlag, New York, 1983.
doi: 10.1007/978-1-4612-1140-2.
|
[9]
|
K.P. Hadeler and P. van den Driessche, Backward bifurcation in epidemic control, Math. Biosci., 146 (1997), 15-35.
doi: 10.1016/S0025-5564(97)00027-8.
|
[10]
|
S.-B. Hsu and T.-W. Huang, Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55 (1995), 763-783.
doi: 10.1137/S0036139993253201.
|
[11]
|
S.-B. Hsu and T.-W. Huang, Uniqueness of limit cycles for a predator-prey system of Holling and Leslie type, Canad. Appl. Math. Quart., 6 (1998), 91-117.
|
[12]
|
C.G. Jones, J.H. Lawton and M. Shachak, Organisms as ecosystem engineers, Ecosystem Management, (1996), 130-147.
doi: 10.1007/978-1-4612-4018-1_14.
|
[13]
|
C.G. Jones, J.H. Lawton and M. Shachak, Positive and negative effects of organisms as physical ecosystem engineers, Ecology, 78 (1997), 1946-1957.
|
[14]
|
C.A. Klausmeier, Regular and irregular patterns in semiarid vegetation, Science, 284 (1999), 1826-1828.
doi: 10.1126/science.284.5421.1826.
|
[15]
|
A.J. Koch and H. Meinhardt, Biological pattern formation: From basic mechanisms to complex structures, Rev. Mod. Phys., 66 (1994), 1481-1507.
doi: 10.1103/RevModPhys.66.1481.
|
[16]
|
Y. A. Kuznetsov, Elements of Applied Bifurcation Theory volume 112 of Applied Mathematical Sciences, Springer-Verlag, New York, 1998.
|
[17]
|
R. Lefever and O. Lejeune, On the origin of tiger bush, Bull. Math. Biol., 59 (1997), 263-294.
doi: 10.1016/S0092-8240(96)00072-9.
|
[18]
|
R.-S. Liu, Z.-L. Feng, H.-P. Zhu and D.L. DeAngelis, Bifurcation analysis of a plant-herbivore model with toxin-determined functional response, J. Differential Equations, 245 (2008), 442-467.
doi: 10.1016/j.jde.2007.10.034.
|
[19]
|
M.-X. Liu, E. Liz and G. Röst, Endemic bubbles generated by delayed behavioral response: Global stability and bifurcation switches in an SIS model, SIAM J. Appl. Math., 75 (2015), 75-91.
doi: 10.1137/140972652.
|
[20]
|
A. Manor and N.M. Shnerb, Dynamical failure of Turing patterns, Europhys. Lett., 74 (2006), 837-843.
doi: 10.1209/epl/i2005-10580-5.
|
[21]
|
R.M. May, Thresholds and breakpoints in ecosystems with a multiplicity of stable states, Nature, 269 (1977), 471-477.
doi: 10.1038/269471a0.
|
[22]
|
H. Meinhardt, Pattern formation in biology: A comparison of models and experiments, Rep. Prog. Phys., 55 (1992), 797-849.
doi: 10.1088/0034-4885/55/6/003.
|
[23]
|
E. Meron, E. Gilad and J. von Hardenberg, Vegetation patterns along a rainfall gradient, Chaos, Solitons Fract., 19 (2004), 367-376.
doi: 10.1016/S0960-0779(03)00049-3.
|
[24]
|
L. Perko, Differential Equations and Dynamical Systems volume 7 of Texts in Applied Mathematics, Springer-Verlag, New York, 2001.
doi: 10.1007/978-1-4613-0003-8.
|
[25]
|
M. Rietkerk, S.C. Dekker, P.C. De Ruiter and J. van de Koppel, Self-organized patchiness and catastrophic shifts in ecosystems, Science, 305 (2004), 1926-1929.
doi: 10.1126/science.1101867.
|
[26]
|
M. Scheffer, J. Bascompte and W.A. Brock, Early-warning signals for critical transitions, Nature, 461 (2009), 53-59.
doi: 10.1038/nature08227.
|
[27]
|
M. Scheffer, S. Carpenter and J.A. Foley, Catastrophic shifts in ecosystems, Nature, 413 (2001), 591-596.
doi: 10.1038/35098000.
|
[28]
|
N. M. Shnerb, P. Sarah, H. Lavee and S. Solomon, Reactive Glass and Vegetation Patterns Phys. Rev. Lett. 90 (2003), 038101.
doi: 10.1103/PhysRevLett. 90. 038101.
|
[29]
|
H.-Y. Shu, L. Wang and J.-H. Wu, Global dynamics of Nicholson's blowflies equation revisited: Onset and termination of nonlinear oscillations, J. Differential Equations, 255 (2013), 2565-2586.
doi: 10.1016/j.jde.2013.06.020.
|
[30]
|
A.M. Turing, The chemical basis of morphogenesis, Philos. Trans. R. Soc. Lond. B Biol. Sci., 237 (1952), 37-72.
doi: 10.1098/rstb.1952.0012.
|
[31]
|
J. von Hardenberg, E. Meron, M. Shachak and Y. Zarmi, Diversity of vegetation patterns and desertification Phys. Rev. Lett. 87 (2001), 198101.
doi: 10.1103/PhysRevLett. 87. 198101.
|
[32]
|
J.-L. Wang, S.-Q. Liu, B.-W. Zheng and Y. Takeuchi, Qualitative and bifurcation analysis using an SIR model with a saturated treatment function, Math. Comput. Modelling, 55 (2012), 710-722.
doi: 10.1016/j.mcm.2011.08.045.
|
[33]
|
J.-F. Wang, J.-P. Shi and J.-J. Wei, Predator-prey system with strong Allee effect in prey, J. Math. Biol., 62 (2011), 291-331.
doi: 10.1007/s00285-010-0332-1.
|
[34]
|
W.-D. Wang, Backward bifurcation of an epidemic model with treatment, Math. Biosci., 201 (2006), 58-71.
doi: 10.1016/j.mbs.2005.12.022.
|
[35]
|
W.-D. Wang and S.-G. Ruan, Bifurcation in an epidemic model with constant removal rate of the infectives, J. Math. Anal. Appl., 291 (2004), 775-793.
doi: 10.1016/j.jmaa.2003.11.043.
|
[36]
|
X.-L. Wang, W.-D. Wang and G.-H. Zhang, Global analysis of predator-prey system with hawk and dove tactics, Stud. Appl. Math., 124 (2010), 151-178.
doi: 10.1111/j.1467-9590.2009.00466.x.
|
[37]
|
A.S. Watt, Pattern and process in the plant community, J. Ecol., 35 (1947), 1-22.
doi: 10.2307/2256497.
|
[38]
|
X. Zhang and X.-N. Liu, Backward bifurcation of an epidemic model with saturated treatment function, J. Math. Anal. Appl., 348 (2008), 433-443.
doi: 10.1016/j.jmaa.2008.07.042.
|
[39]
|
L.-H. Zhou and M. Fan, Dynamics of an SIR epidemic model with limited medical resources revisited, Nonlinear Anal. Real World Appl., 13 (2012), 312-324.
doi: 10.1016/j.nonrwa.2011.07.036.
|