The Lyapunov function is a very useful tool in the theory of dynamical systems, in particular in the study of the stability of an equilibrium point. In this paper we construct a locally Hölder continuous Lyapunov function for a uniformly expansive set for a map f in a metric space X. In the construction a basic role is played by the functions defining the stable and unstable cone-fields. As a tool we also use the approximately quasiconvex functions.
Citation: |
Figure 2. All possible situations in Case Ⅲ (see Figure 1(c)) depending on the position of $\tilde{n}$, where $\text{dom}_e(\alpha)\cap\text{dom}_e(\alpha')=[0,n]_Z$
E. ~Akin,
The General Topology of Dynamical Systems, volume 1 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 1993.
![]() ![]() |
|
D. Angeli
, A Lyapunov approach to the incremental stability properties, IEEE Trans. Automat. Control, 47 (2002)
, 410-421.
doi: 10.1109/9.989067.![]() ![]() ![]() |
|
J. P. Aubin
, Mutational equations in metric spaces, Set-Valued Analysis, 1 (1993)
, 3-46.
doi: 10.1007/BF01039289.![]() ![]() ![]() |
|
F. Forni
and R. Sepulchre
, A differential lyapunov framework for contraction analysis, IEEE Trans. Automat. Control, 59 (2014)
, 614-628.
doi: 10.1109/TAC.2013.2285771.![]() ![]() ![]() |
|
P. Giesl
and S. Hafstein
, Review on computational methods for Lyapunov functions, Discrete and Continuous Dynamical Systems-Series B, 20 (2015)
, 2291-2331.
doi: 10.3934/dcdsb.2015.20.2291.![]() ![]() ![]() |
|
J. Harjani
and K. Sadarangani
, Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations, Nonlinear Analysis: Theory, Methods & Applications, 72 (2010)
, 1188-1197.
doi: 10.1016/j.na.2009.08.003.![]() ![]() ![]() |
|
T. Kaczynski, K. Mischaikow and M. Mrozek,
Computational Homology, volume 157, Springer-Verlag, New York, 2004.
doi: 10.1007/b97315.![]() ![]() ![]() |
|
A. Katok and B. Hasselblatt,
Introduction to the Modern Theory of Dynamical Systems, volume~54. Cambridge University Press, Cambridge, 1995.
doi: 10.1017/CBO9780511809187.![]() ![]() ![]() |
|
V. Lakshmikantham, T. G. Bhaskar and J. V. Devi,
Theory of Set Differential Equations in Metric Spaces, volume~2, Cambridge Scientific Publishers Cambridge, 2006.
![]() ![]() |
|
J. Lewowicz
, Lyapunov functions and topological stability, Journal of Differential Equations, 38 (1980)
, 192-209.
doi: 10.1016/0022-0396(80)90004-2.![]() ![]() ![]() |
|
J. Lewowicz
, Persistence of semi-trajectories, Journal of Dynamics and Differential Equations, 18 (2006)
, 1095-1102.
doi: 10.1007/s10884-006-9047-9.![]() ![]() ![]() |
|
W. Lohmiller
and J.-J. E. Slotine
, On contraction analysis for non-linear systems, Automatica J. IFAC, 34 (1998)
, 683-686.
doi: 10.1016/S0005-1098(98)00019-3.![]() ![]() ![]() |
|
A. M. Lyapunov
, The general problem of the stability of motion, International Journal of Control, 55 (1992)
, 521-790.
doi: 10.1080/00207179208934253.![]() ![]() ![]() |
|
M. Malisoff and F. Mazenc,
Constructions of Strict Lyapunov Functions, Springer Science & Business Media, 2009.
doi: 10.1007/978-1-84882-535-2.![]() ![]() ![]() |
|
M. Mazur
, On the relationship between hyperbolic and cone-hyperbolic structures in metric spaces, Annales Polonici Mathematici, 109 (2013)
, 29-38.
doi: 10.4064/ap109-1-2.![]() ![]() ![]() |
|
M. Mazur
and Ja. Tabor
, Computational hyperbolicity, Discrete and Continuous Dynamical Systems (DCDS-A), 29 (2011)
, 1175-1189.
doi: 10.3934/dcds.2011.29.1175.![]() ![]() ![]() |
|
C. C. McCluskey
, Using Lyapunov functions to construct Lyapunov functionals for delay differential equations, SIAM Journal on Applied Dynamical Systems, 14 (2015)
, 1-24.
doi: 10.1137/140971683.![]() ![]() ![]() |
|
M. Mrozek, Topological dynamics: Rigorous numerics ia cubical homology, In Advances in Applied and Computational Topology: Proc. Symp. Amer. Math. Soc, volume 70, pages 41-73. American Mathematical Society, Providence, RI, 2012.
doi: 10.1090/psapm/070/588.![]() ![]() ![]() |
|
S. Newhouse
, Cone-fields, domination, and hyperbolicity, Modern dynamical systems and applications, (2004)
, 419-432.
![]() ![]() |
|
Ł. Struski
and Ja. Tabor
, Expansivity and cone-fields in metric spaces, Journal of Dynamics and Differential Equations, 26 (2014)
, 517-527.
doi: 10.1007/s10884-014-9373-2.![]() ![]() ![]() |
|
Ł. Struski
, Ja. Tabor
and T. Kulaga
, Cone-fields without constant orbit core dimension, Discrete and Continuous Dynamical Systems, 32 (2012)
, 3651-3664.
doi: 10.3934/dcds.2012.32.3651.![]() ![]() ![]() |
|
Ja. Tabor
, Differential equations in metric spaces, Proceedings of Equadiff 10, 127 (2002)
, 353-360.
![]() ![]() |
|
Ja. Tabor
, Jó. Tabor
and M. Żoldak
, On ω-strongly quasiconvex and ω-strongly quasiconcave sequences, Aequationes mathematicae, 82 (2011)
, 255-268.
doi: 10.1007/s00010-011-0094-x.![]() ![]() ![]() |
|
J. Tolosa
, The method of Lyapunov functions of two variables, Contemporary Mathematics, 440 (2007)
, 243-271.
doi: 10.1090/conm/440/08489.![]() ![]() ![]() |
|
D. Wilczak
and P. Zgliczyński
, Computer assisted proof of the existence of homoclinic tangency for the Hénon map and for the forced damped pendulum, SIAM Journal on Applied Dynamical Systems, 8 (2009)
, 1632-1663.
doi: 10.1137/090759975.![]() ![]() ![]() |
Sequences
All possible situations in Case Ⅲ (see Figure 1(c)) depending on the position of