
-
Previous Article
Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth
- DCDS-B Home
- This Issue
-
Next Article
Fractional Navier-Stokes equations
Stability of dislocation networks of low angle grain boundaries using a continuum energy formulation
1. | Department of Mathematics, Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong |
2. | Department of Mathematics, University of Connecticut 341 Mansfield Road, Storrs, CT 06269, USA |
Low angle grain boundaries can be modeled as arrays of line defects (dislocations) in crystalline materials. The classical continuum models for energetics and dynamics of curved grain boundaries are mainly based on those with equilibrium dislocation structures without the long-range elastic interaction, leading to a capillary force proportional to the local curvature of the grain boundary. The new continuum model recently derived by Zhu and Xiang (J. Mech. Phys. Solids, 69,175-194,2014) incorporates both the long-range dislocation interaction energy and the local dislocation line energy, and enables the study of low angle grain boundaries with non-equilibrium dislocation structures that involves the long-range elastic interaction. Using this new energy formulation, we show that the orthogonal network of two arrays of screw dislocations on a planar twist low angle grain boundary is always stable subject to both perturbations of the constituent dislocations within the grain boundary and the perturbations of the grain boundary itself.
References:
[1] |
A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. G. Pierce and V. V. Bulatov,
Enabling strain hardening simulations with dislocation dynamics, Modell. Simul. Mater. Sci. Eng., 15 (2007), 553-595.
doi: 10.1088/0965-0393/15/6/001. |
[2] |
Á. Bényi and T. Oh,
The Sobolev inequality on the torus revisited, Publicationes mathematicae, 83 (2013), 359-374.
doi: 10.5486/PMD.2013.5529. |
[3] |
B. A. Bilby,
Bristol Conference Report on Defects in Crystalline Materials Physical Society, London, 1955,123. |
[4] |
F. C. Frank, The resultant content of dislocations in an arbitrary intercrystalline boundary, in Symposium on the Plastic Deformation of Crystalline Solids, Office of Naval Research, Pittsburgh, 1950,150-154 |
[5] |
N. M. Ghoniem, S. H. Tong and L. Z. Sun,
Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation, Phys. Rev. B, 61 (2000), 913-927.
doi: 10.1103/PhysRevB.61.913. |
[6] |
E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, American Mathematical Society, 1999. |
[7] |
C. Herring,
Surface tension as a motivation for sintering, Fundamental Contributions to the
Continuum Theory of Evolving Phase Interfaces in Solids, (1999), 143-179.
doi: 10.1007/978-3-642-59938-5_2. |
[8] |
J. P. Hirth and J. Lothe,
Theory of Dislocations 2nd edition, John Wiley, New York, 1982. |
[9] |
L. P. Kubin, G. Canova, M. Condat and B. Devincre,
Dislocation microstructures and plastic flow: A 3d simulation, Solid State Phenomena, 23/24 (1992), 455-472.
doi: 10.4028/www.scientific.net/SSP.23-24.455. |
[10] |
A. T. Lim, D. J. Srolovitz and M. Haataja,
Low-angle grain boundary migration in the presence of extrinsic dislocations, Acta Mater., 57 (2009), 5013-5022.
doi: 10.1016/j.actamat.2009.07.003. |
[11] |
A. T. Lim, M. Haataja, W. Cai and D. J. Srolovitz,
Stress-driven migration of simple low-angle mixed grain boundaries, Acta Mater., 60 (2012), 1395-1407.
doi: 10.1016/j.actamat.2011.11.032. |
[12] |
A. A. Pihlaja,
Modeling Grain Boundary Structures Using Energy Minimization Ph. D. thesis, New York University, 2000. |
[13] |
S. S. Quek, Y. Xiang and D. J. Srolovitz,
Loss of interface coherency around a misfitting spherical inclusion, Acta Mater., 59 (2011), 5398-5410.
doi: 10.1016/j.actamat.2011.05.012. |
[14] |
W. Read and W. Shockley,
Dislocation models of crystal grain boundaries, Phys. Rev., 78 (1950), 275-289.
doi: 10.1103/PhysRev.78.275. |
[15] |
Strichartz,
Improved sobolev inequalities, Trans. Amer. Math. Soc., 279 (1983), 397-407.
doi: 10.1090/S0002-9947-1983-0704623-6. |
[16] |
A. P. Sutton and R. W. Balluffi,
Interfaces in Crystalline Materials Clarendon Press, Oxford, 1995. |
[17] |
A. P. Sutton and V. Vitek,
On the structure of tilt grain boundaries in cubic metals Ⅰ. Symmetical tilt boundaries, Philos. Trans. Roy. Soc. Lond. A, 309 (1983), 1-36.
doi: 10.1098/rsta.1983.0020. |
[18] |
Y. Xiang,
Modeling dislocations at different scales, Commun. Comput. Phys., 1 (2006), 383-424.
|
[19] |
Y. Xiang, L. T. Cheng, D. J. Srolovitz and W. E,
A level set method for dislocation dynamics, Acta Mater., 51 (2003), 5499-5518.
doi: 10.1016/S1359-6454(03)00415-4. |
[20] |
L. C. Zhang, Y. J. Gu and Y. Xiang,
Energy of low angle grain boundaries based on continuum dislocation structure, Acta Mater., 126 (2017), 11-24.
doi: 10.1016/j.actamat.2016.12.035. |
[21] |
X. H. Zhu and Y. Xiang,
Stabilizing force on perturbed grainboundaries using dislocation model, Scripta Mater., 64 (2011), 5-8.
doi: 10.1016/j.scriptamat.2010.08.050. |
[22] |
X. H. Zhu and Y. Xiang,
Continuum frmework for dislocation structure, energy and dynamics of dislocation arrays and low angle grain boundaries, J. Mech. Phys. Solid, 69 (2014), 175-194.
doi: 10.1016/j.jmps.2014.05.005. |
show all references
References:
[1] |
A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T. G. Pierce and V. V. Bulatov,
Enabling strain hardening simulations with dislocation dynamics, Modell. Simul. Mater. Sci. Eng., 15 (2007), 553-595.
doi: 10.1088/0965-0393/15/6/001. |
[2] |
Á. Bényi and T. Oh,
The Sobolev inequality on the torus revisited, Publicationes mathematicae, 83 (2013), 359-374.
doi: 10.5486/PMD.2013.5529. |
[3] |
B. A. Bilby,
Bristol Conference Report on Defects in Crystalline Materials Physical Society, London, 1955,123. |
[4] |
F. C. Frank, The resultant content of dislocations in an arbitrary intercrystalline boundary, in Symposium on the Plastic Deformation of Crystalline Solids, Office of Naval Research, Pittsburgh, 1950,150-154 |
[5] |
N. M. Ghoniem, S. H. Tong and L. Z. Sun,
Parametric dislocation dynamics: A thermodynamics-based approach to investigations of mesoscopic plastic deformation, Phys. Rev. B, 61 (2000), 913-927.
doi: 10.1103/PhysRevB.61.913. |
[6] |
E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, American Mathematical Society, 1999. |
[7] |
C. Herring,
Surface tension as a motivation for sintering, Fundamental Contributions to the
Continuum Theory of Evolving Phase Interfaces in Solids, (1999), 143-179.
doi: 10.1007/978-3-642-59938-5_2. |
[8] |
J. P. Hirth and J. Lothe,
Theory of Dislocations 2nd edition, John Wiley, New York, 1982. |
[9] |
L. P. Kubin, G. Canova, M. Condat and B. Devincre,
Dislocation microstructures and plastic flow: A 3d simulation, Solid State Phenomena, 23/24 (1992), 455-472.
doi: 10.4028/www.scientific.net/SSP.23-24.455. |
[10] |
A. T. Lim, D. J. Srolovitz and M. Haataja,
Low-angle grain boundary migration in the presence of extrinsic dislocations, Acta Mater., 57 (2009), 5013-5022.
doi: 10.1016/j.actamat.2009.07.003. |
[11] |
A. T. Lim, M. Haataja, W. Cai and D. J. Srolovitz,
Stress-driven migration of simple low-angle mixed grain boundaries, Acta Mater., 60 (2012), 1395-1407.
doi: 10.1016/j.actamat.2011.11.032. |
[12] |
A. A. Pihlaja,
Modeling Grain Boundary Structures Using Energy Minimization Ph. D. thesis, New York University, 2000. |
[13] |
S. S. Quek, Y. Xiang and D. J. Srolovitz,
Loss of interface coherency around a misfitting spherical inclusion, Acta Mater., 59 (2011), 5398-5410.
doi: 10.1016/j.actamat.2011.05.012. |
[14] |
W. Read and W. Shockley,
Dislocation models of crystal grain boundaries, Phys. Rev., 78 (1950), 275-289.
doi: 10.1103/PhysRev.78.275. |
[15] |
Strichartz,
Improved sobolev inequalities, Trans. Amer. Math. Soc., 279 (1983), 397-407.
doi: 10.1090/S0002-9947-1983-0704623-6. |
[16] |
A. P. Sutton and R. W. Balluffi,
Interfaces in Crystalline Materials Clarendon Press, Oxford, 1995. |
[17] |
A. P. Sutton and V. Vitek,
On the structure of tilt grain boundaries in cubic metals Ⅰ. Symmetical tilt boundaries, Philos. Trans. Roy. Soc. Lond. A, 309 (1983), 1-36.
doi: 10.1098/rsta.1983.0020. |
[18] |
Y. Xiang,
Modeling dislocations at different scales, Commun. Comput. Phys., 1 (2006), 383-424.
|
[19] |
Y. Xiang, L. T. Cheng, D. J. Srolovitz and W. E,
A level set method for dislocation dynamics, Acta Mater., 51 (2003), 5499-5518.
doi: 10.1016/S1359-6454(03)00415-4. |
[20] |
L. C. Zhang, Y. J. Gu and Y. Xiang,
Energy of low angle grain boundaries based on continuum dislocation structure, Acta Mater., 126 (2017), 11-24.
doi: 10.1016/j.actamat.2016.12.035. |
[21] |
X. H. Zhu and Y. Xiang,
Stabilizing force on perturbed grainboundaries using dislocation model, Scripta Mater., 64 (2011), 5-8.
doi: 10.1016/j.scriptamat.2010.08.050. |
[22] |
X. H. Zhu and Y. Xiang,
Continuum frmework for dislocation structure, energy and dynamics of dislocation arrays and low angle grain boundaries, J. Mech. Phys. Solid, 69 (2014), 175-194.
doi: 10.1016/j.jmps.2014.05.005. |

[1] |
Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760 |
[2] |
Akio Ito, Nobuyuki Kenmochi, Noriaki Yamazaki. Global solvability of a model for grain boundary motion with constraint. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 127-146. doi: 10.3934/dcdss.2012.5.127 |
[3] |
Peicheng Zhu, Lei Yu, Yang Xiang. Weak solutions to an initial-boundary value problem for a continuum equation of motion of grain boundaries. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022139 |
[4] |
Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961 |
[5] |
Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473 |
[6] |
Reiner Henseler, Michael Herrmann, Barbara Niethammer, Juan J. L. Velázquez. A kinetic model for grain growth. Kinetic and Related Models, 2008, 1 (4) : 591-617. doi: 10.3934/krm.2008.1.591 |
[7] |
Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824 |
[8] |
Ken Shirakawa, Hiroshi Watanabe. Energy-dissipative solution to a one-dimensional phase field model of grain boundary motion. Discrete and Continuous Dynamical Systems - S, 2014, 7 (1) : 139-159. doi: 10.3934/dcdss.2014.7.139 |
[9] |
Ken Shirakawa, Hiroshi Watanabe. Large-time behavior for a PDE model of isothermal grain boundary motion with a constraint. Conference Publications, 2015, 2015 (special) : 1009-1018. doi: 10.3934/proc.2015.1009 |
[10] |
Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577 |
[11] |
Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491 |
[12] |
Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417 |
[13] |
Jacky Cresson, Fernando Jiménez, Sina Ober-Blöbaum. Continuous and discrete Noether's fractional conserved quantities for restricted calculus of variations. Journal of Geometric Mechanics, 2022, 14 (1) : 57-89. doi: 10.3934/jgm.2021012 |
[14] |
Katayun Barmak, Eva Eggeling, Maria Emelianenko, Yekaterina Epshteyn, David Kinderlehrer, Richard Sharp, Shlomo Ta'asan. An entropy based theory of the grain boundary character distribution. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 427-454. doi: 10.3934/dcds.2011.30.427 |
[15] |
Zhuchun Li, Yi Liu, Xiaoping Xue. Convergence and stability of generalized gradient systems by Łojasiewicz inequality with application in continuum Kuramoto model. Discrete and Continuous Dynamical Systems, 2019, 39 (1) : 345-367. doi: 10.3934/dcds.2019014 |
[16] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks and Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003 |
[17] |
Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure and Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313 |
[18] |
Nikos Katzourakis. Corrigendum to the paper: Nonuniqueness in Vector-Valued Calculus of Variations in $ L^\infty $ and some Linear Elliptic Systems. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2197-2198. doi: 10.3934/cpaa.2019098 |
[19] |
Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159 |
[20] |
Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete and Continuous Dynamical Systems, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266 |
2021 Impact Factor: 1.497
Tools
Metrics
Other articles
by authors
[Back to Top]