-
Previous Article
Asymptotic dynamics in a two-species chemotaxis model with non-local terms
- DCDS-B Home
- This Issue
-
Next Article
Threshold dynamics of a reaction-diffusion epidemic model with stage structure
Linear programming formulations of deterministic infinite horizon optimal control problems in discrete time
1. | Department of Mathematics, Macquarie University, Macquarie Park, NSW 2113, Australia |
2. | Department of Mathematics and Computer Science, Penn State Harrisburg, Middletown, PA 17057, USA |
This paper is devoted to a study of infinite horizon optimal control problems with time discounting and time averaging criteria in discrete time. We establish that these problems are related to certain infinite-dimensional linear programming (IDLP) problems. We also establish asymptotic relationships between the optimal values of problems with time discounting and long-run average criteria.
References:
[1] |
D. Adelman and D. Klabjan,
Duality and existence of optimal policies in generalized joint replenishment, Mathematics of Operations Research, 30 (2005), 28-50.
doi: 10.1287/moor.1040.0109. |
[2] |
R. Ash, Measure, Integration and Functional Analysis, Academic Press, 1972. |
[3] | |
[4] |
M. Bardi and I. Capuzzo-Dolcetta,
Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems and Control: Foundations and Applications, Birkhäuser, Boston, 1997.
doi: 10.1007/978-0-8176-4755-1. |
[5] |
A. G. Bhatt and V. S. Borkar,
Occupation measures for controlled Markov processes: Characterization and optimality, Annals of Probability, 24 (1996), 1531-1562.
doi: 10.1214/aop/1065725192. |
[6] |
C. J. Bishop, E. A. Feinberg and J. Zhang,
Examples concerning Abel and Cesaro limits, Journal of Mathematical Analysis and Applications, 420 (2014), 1654-1661.
doi: 10.1016/j.jmaa.2014.06.017. |
[7] |
J. Blot,
A Pontryagin principle for infinite-horizon problems under constraints, Dynamics
of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms, 19 (2012), 267-275.
|
[8] |
V. S. Borkar,
A convex analytic approach to Markov decision processes, Probability Theory
and Related Fields, 78 (1988), 583-602.
doi: 10.1007/BF00353877. |
[9] |
R. Buckdahn, D. Goreac and M. Quincampoix,
Stochastic optimal control and linear programming approach, Appl. Math. Optim, 63 (2011), 257-276.
doi: 10.1007/s00245-010-9120-y. |
[10] |
D. A. Carlson, A. B. Haurier and A. Leizarowicz,
Infinite Horizon Optimal Control. Deterministic and Stochastic Processes, Springer, Berlin, 1991.
doi: 10.1007/978-3-642-76755-5. |
[11] |
N. Dunford and J. T. Schwartz,
Linear Operators, Part I, General Theory, Wiley & Sons, Inc. , New York, 1988. |
[12] |
L. Finlay, V. Gaitsgory and I. Lebedev,
Duality in linear programming problems related to deterministic long run average problems of optimal control, SIAM J. Control and Optimization, 47 (2008), 1667-1700.
doi: 10.1137/060676398. |
[13] |
W. H. Fleming and D. Vermes,
Convex duality approach to the optimal control of diffusions, SIAM J. Control Optimization, 27 (1989), 1136-1155.
doi: 10.1137/0327060. |
[14] |
V. Gaitsgory,
On representation of the limit occupational measures set of control systems with applications to singularly perturbed control systems, SIAM J. Control and Optimization, 43 (2004), 325-340.
doi: 10.1137/S0363012903424186. |
[15] |
V. Gaitsgory and M. Quincampoix,
Linear programming approach to deterministic infinite horizon optimal control problems with discounting, SIAM J. Control and Optim, 48 (2009), 2480-2512.
doi: 10.1137/070696209. |
[16] |
V. Gaitsgory and M. Quincampoix,
On sets of occupational measures generated by a deterministic control system on an infinite time horizon, Nonlinear Analysis (Theory, Methods &
Applications), 88 (2013), 27-41.
doi: 10.1016/j.na.2013.03.015. |
[17] |
V. Gaitsgory and S. Rossomakhine,
Linear programming approach to deterministic long run
average problems of optimal control, SIAM J. of Control and Optimization, 44 (2006), 2006-2037.
doi: 10.1137/040616802. |
[18] |
D. Goreac and O.-S. Serea,
Linearization techniques for $L^{∞} $ -control problems and dynamic programming principles in classical and $L^{∞} $ control problems, ESAIM: Control, Optimization
and Calculus of Variations, 18 (2012), 836-855.
doi: 10.1051/cocv/2011183. |
[19] |
L. Grüne,
Asymptotic controllability and exponential stabilization of nonlinear control systems at singular points, SIAM J. Control Optim, 36 (1998), 1495-1503.
doi: 10.1137/S0363012997315919. |
[20] |
L. Grüne,
On the relation between discounted and average optimal value functions, J. Diff. Equations, 148 (1998), 65-69.
doi: 10.1006/jdeq.1998.3451. |
[21] |
D. Hernandez-Hernandez, O. Hernandez-Lerma and M. Taksar,
The linear programming approach to deterministic optimal control problems, Appl. Math., 24 (1996), 17-33.
|
[22] |
O. Hernandez-Lerma and J. B. Lasserre,
The linear programmimg approach, Handbook of Markov Decision Processes: Methods and Applications, 32 (2007), 528-550.
doi: 10.1007/978-1-4615-0805-2_12. |
[23] |
D. Klabjan and D. Adelman,
An Infinite-dimensional linear programming algorithm for deterministic semi-Markov decision processes on Borel spaces, Mathematics of Operations Research, 32 (2007), 528-550.
doi: 10.1287/moor.1070.0252. |
[24] |
T. G. Kurtz and R. H. Stockbridge,
Existence of Markov controls and characterization of optimal Markov controls, SIAM J. on Control and Optimization, 36 (1998), 609-653.
doi: 10.1137/S0363012995295516. |
[25] |
J. B. Lasserre, D. Henrion, C. Prieur and E. Trélat,
Nonlinear optimal control via occupation measures and LMI-relaxations, SIAM J. Control Optim, 47 (2008), 1643-1666.
doi: 10.1137/070685051. |
[26] |
E. Lehrer and S. Sorin,
A uniform Tauberian theorem in dynamic programming, Mathematics
of Operations Research, 17 (1992), 303-307.
doi: 10.1287/moor.17.2.303. |
[27] |
M. Quincampoix and O. Serea,
The problem of optimal control with reflection studied through a linear optimization problem stated on occupational measures, Nonlinear Anal, 72 (2010), 2803-2815.
doi: 10.1016/j.na.2009.11.024. |
[28] |
J. Renault,
Uniform value in dynamic programming, J. European Mathematical Society, 13 (2011), 309-330.
doi: 10.4171/JEMS/254. |
[29] |
J. E. Rubio,
Control and Optimization. The Linear Treatment of Nonlinear Problems, Manchester University Press, Manchester, 1986. |
[30] |
R. H. Stockbridge,
Time-Average control of a martingale problem. Existence of a stationary solution, Annals of Probability, 18 (1990), 190-205.
doi: 10.1214/aop/1176990944. |
[31] |
R. H. Stockbridge,
Time-average control of a martingale problem: A linear programming formulation, Annals of Probability, 18 (1990), 206-217.
doi: 10.1214/aop/1176990945. |
[32] |
R. Sznajder and J. A. Filar,
Some comments on a theorem of Hardy and Littlewood, J.
Optimization Theory and Applications, 75 (1992), 201-208.
doi: 10.1007/BF00939913. |
[33] |
R. Vinter,
Convex duality and nonlinear optimal control, SIAM J. Control and Optim, 31 (1993), 518-538.
doi: 10.1137/0331024. |
[34] |
A. Zaslavski,
Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems, Springer, 2014.
doi: 10.1007/978-3-319-08034-5. |
[35] |
A. Zaslavski,
Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York, 2006. |
[36] |
A. Zaslavski,
Turnpike Phenomenon and Infinite Horizon Optimal Control, Springer Optimization and Its Applications, New York, 2014.
doi: 10.1007/978-3-319-08828-0. |
show all references
References:
[1] |
D. Adelman and D. Klabjan,
Duality and existence of optimal policies in generalized joint replenishment, Mathematics of Operations Research, 30 (2005), 28-50.
doi: 10.1287/moor.1040.0109. |
[2] |
R. Ash, Measure, Integration and Functional Analysis, Academic Press, 1972. |
[3] | |
[4] |
M. Bardi and I. Capuzzo-Dolcetta,
Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Systems and Control: Foundations and Applications, Birkhäuser, Boston, 1997.
doi: 10.1007/978-0-8176-4755-1. |
[5] |
A. G. Bhatt and V. S. Borkar,
Occupation measures for controlled Markov processes: Characterization and optimality, Annals of Probability, 24 (1996), 1531-1562.
doi: 10.1214/aop/1065725192. |
[6] |
C. J. Bishop, E. A. Feinberg and J. Zhang,
Examples concerning Abel and Cesaro limits, Journal of Mathematical Analysis and Applications, 420 (2014), 1654-1661.
doi: 10.1016/j.jmaa.2014.06.017. |
[7] |
J. Blot,
A Pontryagin principle for infinite-horizon problems under constraints, Dynamics
of Continuous, Discrete and Impulsive Systems Series B: Applications and Algorithms, 19 (2012), 267-275.
|
[8] |
V. S. Borkar,
A convex analytic approach to Markov decision processes, Probability Theory
and Related Fields, 78 (1988), 583-602.
doi: 10.1007/BF00353877. |
[9] |
R. Buckdahn, D. Goreac and M. Quincampoix,
Stochastic optimal control and linear programming approach, Appl. Math. Optim, 63 (2011), 257-276.
doi: 10.1007/s00245-010-9120-y. |
[10] |
D. A. Carlson, A. B. Haurier and A. Leizarowicz,
Infinite Horizon Optimal Control. Deterministic and Stochastic Processes, Springer, Berlin, 1991.
doi: 10.1007/978-3-642-76755-5. |
[11] |
N. Dunford and J. T. Schwartz,
Linear Operators, Part I, General Theory, Wiley & Sons, Inc. , New York, 1988. |
[12] |
L. Finlay, V. Gaitsgory and I. Lebedev,
Duality in linear programming problems related to deterministic long run average problems of optimal control, SIAM J. Control and Optimization, 47 (2008), 1667-1700.
doi: 10.1137/060676398. |
[13] |
W. H. Fleming and D. Vermes,
Convex duality approach to the optimal control of diffusions, SIAM J. Control Optimization, 27 (1989), 1136-1155.
doi: 10.1137/0327060. |
[14] |
V. Gaitsgory,
On representation of the limit occupational measures set of control systems with applications to singularly perturbed control systems, SIAM J. Control and Optimization, 43 (2004), 325-340.
doi: 10.1137/S0363012903424186. |
[15] |
V. Gaitsgory and M. Quincampoix,
Linear programming approach to deterministic infinite horizon optimal control problems with discounting, SIAM J. Control and Optim, 48 (2009), 2480-2512.
doi: 10.1137/070696209. |
[16] |
V. Gaitsgory and M. Quincampoix,
On sets of occupational measures generated by a deterministic control system on an infinite time horizon, Nonlinear Analysis (Theory, Methods &
Applications), 88 (2013), 27-41.
doi: 10.1016/j.na.2013.03.015. |
[17] |
V. Gaitsgory and S. Rossomakhine,
Linear programming approach to deterministic long run
average problems of optimal control, SIAM J. of Control and Optimization, 44 (2006), 2006-2037.
doi: 10.1137/040616802. |
[18] |
D. Goreac and O.-S. Serea,
Linearization techniques for $L^{∞} $ -control problems and dynamic programming principles in classical and $L^{∞} $ control problems, ESAIM: Control, Optimization
and Calculus of Variations, 18 (2012), 836-855.
doi: 10.1051/cocv/2011183. |
[19] |
L. Grüne,
Asymptotic controllability and exponential stabilization of nonlinear control systems at singular points, SIAM J. Control Optim, 36 (1998), 1495-1503.
doi: 10.1137/S0363012997315919. |
[20] |
L. Grüne,
On the relation between discounted and average optimal value functions, J. Diff. Equations, 148 (1998), 65-69.
doi: 10.1006/jdeq.1998.3451. |
[21] |
D. Hernandez-Hernandez, O. Hernandez-Lerma and M. Taksar,
The linear programming approach to deterministic optimal control problems, Appl. Math., 24 (1996), 17-33.
|
[22] |
O. Hernandez-Lerma and J. B. Lasserre,
The linear programmimg approach, Handbook of Markov Decision Processes: Methods and Applications, 32 (2007), 528-550.
doi: 10.1007/978-1-4615-0805-2_12. |
[23] |
D. Klabjan and D. Adelman,
An Infinite-dimensional linear programming algorithm for deterministic semi-Markov decision processes on Borel spaces, Mathematics of Operations Research, 32 (2007), 528-550.
doi: 10.1287/moor.1070.0252. |
[24] |
T. G. Kurtz and R. H. Stockbridge,
Existence of Markov controls and characterization of optimal Markov controls, SIAM J. on Control and Optimization, 36 (1998), 609-653.
doi: 10.1137/S0363012995295516. |
[25] |
J. B. Lasserre, D. Henrion, C. Prieur and E. Trélat,
Nonlinear optimal control via occupation measures and LMI-relaxations, SIAM J. Control Optim, 47 (2008), 1643-1666.
doi: 10.1137/070685051. |
[26] |
E. Lehrer and S. Sorin,
A uniform Tauberian theorem in dynamic programming, Mathematics
of Operations Research, 17 (1992), 303-307.
doi: 10.1287/moor.17.2.303. |
[27] |
M. Quincampoix and O. Serea,
The problem of optimal control with reflection studied through a linear optimization problem stated on occupational measures, Nonlinear Anal, 72 (2010), 2803-2815.
doi: 10.1016/j.na.2009.11.024. |
[28] |
J. Renault,
Uniform value in dynamic programming, J. European Mathematical Society, 13 (2011), 309-330.
doi: 10.4171/JEMS/254. |
[29] |
J. E. Rubio,
Control and Optimization. The Linear Treatment of Nonlinear Problems, Manchester University Press, Manchester, 1986. |
[30] |
R. H. Stockbridge,
Time-Average control of a martingale problem. Existence of a stationary solution, Annals of Probability, 18 (1990), 190-205.
doi: 10.1214/aop/1176990944. |
[31] |
R. H. Stockbridge,
Time-average control of a martingale problem: A linear programming formulation, Annals of Probability, 18 (1990), 206-217.
doi: 10.1214/aop/1176990945. |
[32] |
R. Sznajder and J. A. Filar,
Some comments on a theorem of Hardy and Littlewood, J.
Optimization Theory and Applications, 75 (1992), 201-208.
doi: 10.1007/BF00939913. |
[33] |
R. Vinter,
Convex duality and nonlinear optimal control, SIAM J. Control and Optim, 31 (1993), 518-538.
doi: 10.1137/0331024. |
[34] |
A. Zaslavski,
Stability of the Turnpike Phenomenon in Discrete-Time Optimal Control Problems, Springer, 2014.
doi: 10.1007/978-3-319-08034-5. |
[35] |
A. Zaslavski,
Turnpike Properties in the Calculus of Variations and Optimal Control, Springer, New York, 2006. |
[36] |
A. Zaslavski,
Turnpike Phenomenon and Infinite Horizon Optimal Control, Springer Optimization and Its Applications, New York, 2014.
doi: 10.1007/978-3-319-08828-0. |
[1] |
Vladimir Gaitsgory, Alex Parkinson, Ilya Shvartsman. Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1743-1767. doi: 10.3934/dcdsb.2018235 |
[2] |
Fabio Bagagiolo. An infinite horizon optimal control problem for some switching systems. Discrete and Continuous Dynamical Systems - B, 2001, 1 (4) : 443-462. doi: 10.3934/dcdsb.2001.1.443 |
[3] |
Andrew Vlasic. Long-run analysis of the stochastic replicator dynamics in the presence of random jumps. Journal of Dynamics and Games, 2018, 5 (4) : 283-309. doi: 10.3934/jdg.2018018 |
[4] |
Jingang Zhao, Chi Zhang. Finite-horizon optimal control of discrete-time linear systems with completely unknown dynamics using Q-learning. Journal of Industrial and Management Optimization, 2021, 17 (3) : 1471-1483. doi: 10.3934/jimo.2020030 |
[5] |
Jianhui Huang, Xun Li, Jiongmin Yong. A linear-quadratic optimal control problem for mean-field stochastic differential equations in infinite horizon. Mathematical Control and Related Fields, 2015, 5 (1) : 97-139. doi: 10.3934/mcrf.2015.5.97 |
[6] |
Valery Y. Glizer, Oleg Kelis. Asymptotic properties of an infinite horizon partial cheap control problem for linear systems with known disturbances. Numerical Algebra, Control and Optimization, 2018, 8 (2) : 211-235. doi: 10.3934/naco.2018013 |
[7] |
Jochen Jungeilges, Trygve Kastberg Nilssen, Tatyana Perevalova, Alexander Satov. Transitions between metastable long-run consumption behaviors in a stochastic peer-driven consumer network. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5849-5871. doi: 10.3934/dcdsb.2021232 |
[8] |
Vincenzo Basco, Piermarco Cannarsa, Hélène Frankowska. Necessary conditions for infinite horizon optimal control problems with state constraints. Mathematical Control and Related Fields, 2018, 8 (3&4) : 535-555. doi: 10.3934/mcrf.2018022 |
[9] |
Naïla Hayek. Infinite-horizon multiobjective optimal control problems for bounded processes. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1121-1141. doi: 10.3934/dcdss.2018064 |
[10] |
Galina Kurina, Sahlar Meherrem. Decomposition of discrete linear-quadratic optimal control problems for switching systems. Conference Publications, 2015, 2015 (special) : 764-774. doi: 10.3934/proc.2015.0764 |
[11] |
Evelyn Herberg, Michael Hinze, Henrik Schumacher. Maximal discrete sparsity in parabolic optimal control with measures. Mathematical Control and Related Fields, 2020, 10 (4) : 735-759. doi: 10.3934/mcrf.2020018 |
[12] |
Senda Ounaies, Jean-Marc Bonnisseau, Souhail Chebbi, Halil Mete Soner. Merton problem in an infinite horizon and a discrete time with frictions. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1323-1331. doi: 10.3934/jimo.2016.12.1323 |
[13] |
Alexander Tarasyev, Anastasia Usova. Application of a nonlinear stabilizer for localizing search of optimal trajectories in control problems with infinite horizon. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 389-406. doi: 10.3934/naco.2013.3.389 |
[14] |
Rein Luus. Optimal control of oscillatory systems by iterative dynamic programming. Journal of Industrial and Management Optimization, 2008, 4 (1) : 1-15. doi: 10.3934/jimo.2008.4.1 |
[15] |
Yanqun Liu. Duality in linear programming: From trichotomy to quadrichotomy. Journal of Industrial and Management Optimization, 2011, 7 (4) : 1003-1011. doi: 10.3934/jimo.2011.7.1003 |
[16] |
Yadong Shu, Bo Li. Linear-quadratic optimal control for discrete-time stochastic descriptor systems. Journal of Industrial and Management Optimization, 2022, 18 (3) : 1583-1602. doi: 10.3934/jimo.2021034 |
[17] |
Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial and Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399 |
[18] |
Qiying Hu, Wuyi Yue. Optimal control for resource allocation in discrete event systems. Journal of Industrial and Management Optimization, 2006, 2 (1) : 63-80. doi: 10.3934/jimo.2006.2.63 |
[19] |
Michael Basin, Pablo Rodriguez-Ramirez. An optimal impulsive control regulator for linear systems. Numerical Algebra, Control and Optimization, 2011, 1 (2) : 275-282. doi: 10.3934/naco.2011.1.275 |
[20] |
H. O. Fattorini. The maximum principle for linear infinite dimensional control systems with state constraints. Discrete and Continuous Dynamical Systems, 1995, 1 (1) : 77-101. doi: 10.3934/dcds.1995.1.77 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]