
-
Previous Article
Repulsion effects on boundedness in a quasilinear attraction-repulsion chemotaxis model in higher dimensions
- DCDS-B Home
- This Issue
-
Next Article
Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth
On the scale dynamics of the tropical cyclone intensity
1. | Department of Earth and Atmospheric Sciences, Indiana University, Bloomington, IN 47405, USA |
2. | Department of Mathematics, Sichuan University, Sichuan Sheng, China |
This study examines the dynamics of tropical cyclone (TC) development in a TC scale framework. It is shown that this TC-scale dynamics contains the maximum potential intensity (MPI) limit as an asymptotically stable point for which the Coriolis force and the tropospheric stratification are two key parameters responsible for the bifurcation of TC development. In particular, it is found that the Coriolis force breaks the symmetry of the TC development and results in a larger basin of attraction toward the cyclonic (anticyclonic) stable point in the Northern (Southern) Hemisphere. Despite the sensitive dependence of intensity bifurcation on these two parameters, the structurally stable property of the MPI critical point is maintained for a wide range of parameters.
References:
[1] |
B. R. Brown and G. J. Hakim,
Variability and predictability of a three-dimensional hurricane in statistical equilibrium, J. Atmos. Sci., 70 (2013), 1806-1820.
doi: 10.1175/JAS-D-12-0112.1. |
[2] |
G. H. Bryan and R. Rotunno,
The maximum intensity of tropical cyclones in axisymmetric numerical model simulations, Mon. Wea. Rev, 137 (2009), 1770-1789.
doi: 10.1175/2008MWR2709.1. |
[3] |
J. G. Charney and A. Eliassen,
On the growth of the hurricane depression, J. Atmos. Sci, 21 (1964), 68-75.
doi: 10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2. |
[4] |
K. A. Emanuel,
A statistical analysis of tropical cyclone intensity, Monthly Weather Review, 128 (2000), 1139-1152.
doi: 10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2. |
[5] |
K. A. Emanuel,
An air-sea interaction theory for tropical cyclones. part i: Steady-state maintenance, J. Atmos. Sci, 43 (1986), 585-605.
doi: 10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2. |
[6] |
K. A. Emanuel,
The Maximum Intensity of Hurricanes, J. Atmos. Sci, 45 (1986), 1143-1155.
doi: 10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2. |
[7] |
M. Ferrara,, F. Groff, Z. Moon, K. Keshavamurthy, S. M. Robeson and C. Kieu,
Large-scale control of the lower stratosphere on variability of tropical cyclone intensity, Geophys. Res. Lett., 44 (2017), 4313-4323.
|
[8] |
G. J. Hakim,
The mean state of axisymmetric hurricanes in statistical equilibrium, J. Atmos. Sci, 68 (2011), 1364-1376.
doi: 10.1175/2010JAS3644.1. |
[9] |
G. J. Hakim,
The variability and predictability of axisymmetric hurricanes in statistical equilibrium, J. Atmos. Sci, 70 (2013), 993-1005.
doi: 10.1175/JAS-D-12-0188.1. |
[10] |
K. A. Hill and G. M. Lackmann,
The impact of future climate change on TC intensity and structure: A downscaling approach, Journal of Climate, 24 (2011), 4644-4661.
doi: 10.1175/2011JCLI3761.1. |
[11] |
C. Kieu,
Hurricane maximum potential intensity equilibrium, Q.J.R. Meteorol. Soc., 141 (2015), 2471-2480.
doi: 10.1002/qj.2556. |
[12] |
C. Kieu and Z. Moon,
Hurricane intensity predictability, Bull. Amer. Meteo. Soc., 97 (2016), 1847-1857.
doi: 10.1175/BAMS-D-15-00168.1. |
[13] |
C. Kieu, H. Chen and D. L. Zhang,
An examination of the pressure-wind relationship for intense tropical cyclones, Wea. and Forecasting, 25 (2010), 895-907.
|
[14] |
Y. Liu, D.-L. Zhang and M. K. Yau,
A Multiscale Numerical Study of Hurricane Andrew Part Ⅱ: Kinematics and Inner-Core Structures, J. Atmos. Sci, 127 (1999), 2597-2616.
|
[15] |
T. Ma,
Topology of Manifolds Science Press, Beijing. , 2007. |
[16] |
J. W. Milnor,
Topology from the Differentiable Viewpoint Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va. 1965. |
[17] |
Y. Ogura and N. A. Phillips,
Scale analysis of deep and shallow convection in the atmophere, J. Atmos. Sci, 19 (1962), 173-179.
|
[18] |
R. Rotunno and K. A. Emanuel,
An airsea interaction theory for tropical cyclones. part ii: Evolutionary study using a nonhydrostatic axisymmetric numerical model, J. Atmos. Sci, 44 (1987), 542-561.
|
[19] |
W. Shen, R. E. Tuleya and I. Ginis,
A sensitivity study of the thermodynamic environment
on GFDL model hurricane intensity: Implications for global warming, J. Climate, 13 (2000), 109-121.
|
[20] |
R. K. Smith, G. Kilroy and M. T. Montgomery,
Why do model tropical cyclones intensify more rapidly at low latitudes, Journal of the Atmospheric Sciences, 72 (2015), 1783-1840.
doi: 10.1175/JAS-D-14-0044.1. |
[21] |
R. Wilhelmson and Y. Ogura,
The pressure perturbation and the numerical modeling of a cloud, Journal of the Atmospheric Sciences, 29 (1972), 1295-1307.
doi: 10.1175/1520-0469(1972)029<1295:TPPATN>2.0.CO;2. |
[22] |
H. E. Willoughby,
Forced secondary circulations in hurricanes, J. Geophys. Res, 84 (1979), 3173-3183.
doi: 10.1029/JC084iC06p03173. |
[23] |
H. E. Willoughby,
Gradient Balance in Tropical Cyclones, J. Atmos. Sci., 47 (1990), 265-274.
doi: 10.1175/1520-0469(1990)047<0265:GBITC>2.0.CO;2. |
show all references
References:
[1] |
B. R. Brown and G. J. Hakim,
Variability and predictability of a three-dimensional hurricane in statistical equilibrium, J. Atmos. Sci., 70 (2013), 1806-1820.
doi: 10.1175/JAS-D-12-0112.1. |
[2] |
G. H. Bryan and R. Rotunno,
The maximum intensity of tropical cyclones in axisymmetric numerical model simulations, Mon. Wea. Rev, 137 (2009), 1770-1789.
doi: 10.1175/2008MWR2709.1. |
[3] |
J. G. Charney and A. Eliassen,
On the growth of the hurricane depression, J. Atmos. Sci, 21 (1964), 68-75.
doi: 10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2. |
[4] |
K. A. Emanuel,
A statistical analysis of tropical cyclone intensity, Monthly Weather Review, 128 (2000), 1139-1152.
doi: 10.1175/1520-0493(2000)128<1139:ASAOTC>2.0.CO;2. |
[5] |
K. A. Emanuel,
An air-sea interaction theory for tropical cyclones. part i: Steady-state maintenance, J. Atmos. Sci, 43 (1986), 585-605.
doi: 10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2. |
[6] |
K. A. Emanuel,
The Maximum Intensity of Hurricanes, J. Atmos. Sci, 45 (1986), 1143-1155.
doi: 10.1175/1520-0469(1988)045<1143:TMIOH>2.0.CO;2. |
[7] |
M. Ferrara,, F. Groff, Z. Moon, K. Keshavamurthy, S. M. Robeson and C. Kieu,
Large-scale control of the lower stratosphere on variability of tropical cyclone intensity, Geophys. Res. Lett., 44 (2017), 4313-4323.
|
[8] |
G. J. Hakim,
The mean state of axisymmetric hurricanes in statistical equilibrium, J. Atmos. Sci, 68 (2011), 1364-1376.
doi: 10.1175/2010JAS3644.1. |
[9] |
G. J. Hakim,
The variability and predictability of axisymmetric hurricanes in statistical equilibrium, J. Atmos. Sci, 70 (2013), 993-1005.
doi: 10.1175/JAS-D-12-0188.1. |
[10] |
K. A. Hill and G. M. Lackmann,
The impact of future climate change on TC intensity and structure: A downscaling approach, Journal of Climate, 24 (2011), 4644-4661.
doi: 10.1175/2011JCLI3761.1. |
[11] |
C. Kieu,
Hurricane maximum potential intensity equilibrium, Q.J.R. Meteorol. Soc., 141 (2015), 2471-2480.
doi: 10.1002/qj.2556. |
[12] |
C. Kieu and Z. Moon,
Hurricane intensity predictability, Bull. Amer. Meteo. Soc., 97 (2016), 1847-1857.
doi: 10.1175/BAMS-D-15-00168.1. |
[13] |
C. Kieu, H. Chen and D. L. Zhang,
An examination of the pressure-wind relationship for intense tropical cyclones, Wea. and Forecasting, 25 (2010), 895-907.
|
[14] |
Y. Liu, D.-L. Zhang and M. K. Yau,
A Multiscale Numerical Study of Hurricane Andrew Part Ⅱ: Kinematics and Inner-Core Structures, J. Atmos. Sci, 127 (1999), 2597-2616.
|
[15] |
T. Ma,
Topology of Manifolds Science Press, Beijing. , 2007. |
[16] |
J. W. Milnor,
Topology from the Differentiable Viewpoint Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, Va. 1965. |
[17] |
Y. Ogura and N. A. Phillips,
Scale analysis of deep and shallow convection in the atmophere, J. Atmos. Sci, 19 (1962), 173-179.
|
[18] |
R. Rotunno and K. A. Emanuel,
An airsea interaction theory for tropical cyclones. part ii: Evolutionary study using a nonhydrostatic axisymmetric numerical model, J. Atmos. Sci, 44 (1987), 542-561.
|
[19] |
W. Shen, R. E. Tuleya and I. Ginis,
A sensitivity study of the thermodynamic environment
on GFDL model hurricane intensity: Implications for global warming, J. Climate, 13 (2000), 109-121.
|
[20] |
R. K. Smith, G. Kilroy and M. T. Montgomery,
Why do model tropical cyclones intensify more rapidly at low latitudes, Journal of the Atmospheric Sciences, 72 (2015), 1783-1840.
doi: 10.1175/JAS-D-14-0044.1. |
[21] |
R. Wilhelmson and Y. Ogura,
The pressure perturbation and the numerical modeling of a cloud, Journal of the Atmospheric Sciences, 29 (1972), 1295-1307.
doi: 10.1175/1520-0469(1972)029<1295:TPPATN>2.0.CO;2. |
[22] |
H. E. Willoughby,
Forced secondary circulations in hurricanes, J. Geophys. Res, 84 (1979), 3173-3183.
doi: 10.1029/JC084iC06p03173. |
[23] |
H. E. Willoughby,
Gradient Balance in Tropical Cyclones, J. Atmos. Sci., 47 (1990), 265-274.
doi: 10.1175/1520-0469(1990)047<0265:GBITC>2.0.CO;2. |



[1] |
Franco Maceri, Michele Marino, Giuseppe Vairo. Equilibrium and stability of tensegrity structures: A convex analysis approach. Discrete and Continuous Dynamical Systems - S, 2013, 6 (2) : 461-478. doi: 10.3934/dcdss.2013.6.461 |
[2] |
Tian Ma, Shouhong Wang. Tropical atmospheric circulations: Dynamic stability and transitions. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1399-1417. doi: 10.3934/dcds.2010.26.1399 |
[3] |
Simion Filip. Tropical dynamics of area-preserving maps. Journal of Modern Dynamics, 2019, 14: 179-226. doi: 10.3934/jmd.2019007 |
[4] |
Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. Stability analysis of inhomogeneous equilibrium for axially and transversely excited nonlinear beam. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1447-1462. doi: 10.3934/cpaa.2011.10.1447 |
[5] |
Tsuyoshi Kajiwara, Toru Sasaki. A note on the stability analysis of pathogen-immune interaction dynamics. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 615-622. doi: 10.3934/dcdsb.2004.4.615 |
[6] |
Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure and Applied Analysis, 2006, 5 (3) : 515-528. doi: 10.3934/cpaa.2006.5.515 |
[7] |
Xiong Li. The stability of the equilibrium for a perturbed asymmetric oscillator. Communications on Pure and Applied Analysis, 2007, 6 (1) : 69-82. doi: 10.3934/cpaa.2007.6.69 |
[8] |
Jürgen Saal. Wellposedness of the tornado-hurricane equations. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 649-664. doi: 10.3934/dcds.2010.26.649 |
[9] |
Salvatore Rionero. A nonlinear $L^2$-stability analysis for two-species population dynamics with dispersal. Mathematical Biosciences & Engineering, 2006, 3 (1) : 189-204. doi: 10.3934/mbe.2006.3.189 |
[10] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3541-3556. doi: 10.3934/dcdss.2020441 |
[11] |
Thomas Blanc, Mihaï Bostan. Multi-scale analysis for highly anisotropic parabolic problems. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 335-399. doi: 10.3934/dcdsb.2019186 |
[12] |
Robert Stephen Cantrell, Chris Cosner, William F. Fagan. Edge-linked dynamics and the scale-dependence of competitive. Mathematical Biosciences & Engineering, 2005, 2 (4) : 833-868. doi: 10.3934/mbe.2005.2.833 |
[13] |
MirosŁaw Lachowicz, Tatiana Ryabukha. Equilibrium solutions for microscopic stochastic systems in population dynamics. Mathematical Biosciences & Engineering, 2013, 10 (3) : 777-786. doi: 10.3934/mbe.2013.10.777 |
[14] |
Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225 |
[15] |
Andrey V. Kremnev, Alexander S. Kuleshov. Nonlinear dynamics and stability of the skateboard. Discrete and Continuous Dynamical Systems - S, 2010, 3 (1) : 85-103. doi: 10.3934/dcdss.2010.3.85 |
[16] |
Guangying Lv, Hongjun Gao, Jinlong Wei, Jiang-Lun Wu. The effect of noise intensity on parabolic equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1715-1728. doi: 10.3934/dcdsb.2019248 |
[17] |
Shunfu Jin, Wuyi Yue, Shiying Ge. Equilibrium analysis of an opportunistic spectrum access mechanism with imperfect sensing results. Journal of Industrial and Management Optimization, 2017, 13 (3) : 1255-1271. doi: 10.3934/jimo.2016071 |
[18] |
Xiao-Bing Li, Xian-Jun Long, Zhi Lin. Stability of solution mapping for parametric symmetric vector equilibrium problems. Journal of Industrial and Management Optimization, 2015, 11 (2) : 661-671. doi: 10.3934/jimo.2015.11.661 |
[19] |
Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 863-882. doi: 10.3934/dcdsb.2021068 |
[20] |
Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete and Continuous Dynamical Systems, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883 |
2020 Impact Factor: 1.327
Tools
Metrics
Other articles
by authors
[Back to Top]